Available Technologies by Category
Versatile Continuum Robots with Variable Stiffness Control for Improved Positioning and Manipulation
  • Continuum robot design offers stiffness control continuously along the length of a guidewire or at variable discrete locations along the structure’s length. 
  • Versatile design is not restricted to one actuator type along the length of the guidewire, and elements can be placed along any section of the guidewire body.
  • With better control of the wire positioning within a patient’s anatomy, it may be possible to improve treatment outcomes.
9166
Patient-Centered Biofeedback Headset Can Isolate, Monitor, and Analyze Vocal Output in Real Time for Optimal Voice Modulation in Patients with Parkinson’s Disease
  • Innovative headset offers real-time haptic feedback for vocal improvement and increased patient autonomy.
  • Device stores easily accessible data for therapist review and fine-tuning of preset therapeutic thresholds to continually improve vocal output.
  • Lightweight, low-profile, battery-powered headset are favorable for all-day wear and use omnidirectional microphones for optimal comfort.
9134
Microfluidic System Enables Scalable, High-Throughput Separation for High-Purity Human Induced Pluripotent Stem Cells (hiPSCs)
  • Simple, tunable high-throughput process separates hiPSCs quickly and efficiently according to the degree to which they adhere to a substrate inside the microfluidic device. 
  • Separation of intact cell colonies enables this simple system to avoid damaging and adversely affecting the pluripotency of the cells.
  • The approach is fast, does not rely on labeling technologies, supports greatly enriched cells, and results in a cell survival rate greater than 80%.
5685
Hydrogel-Based Artificial Ligaments Offer Substantial Improvements for ACL Reconstruction Therapies
  • This biocompatible hydrogel-based device is designed to reproduce natural ligament/tendon function to decrease the incidence of immune responses that lead to chronic inflammation.
  • An alternative to standard artificial ligaments and tendons, the device is designed to be placed via non-invasive techniques, making it a safer alternative to current, invasive surgical methods.
  • Non-biodegradable hydrogels are highly durable, potentially increasing the lifespan of the prostheses.
5386
Thermoformed Polymeric Valved Conduits Offer a Biocompatible, Customizable Heart Valve Replacement Treatment
  • This biocompatible device may reduce adverse events resulting in a lower incidence of post-surgical adverse events for better long-term outcomes.
  • Customizable valve conduits allow patient-specific device creation for potentially easier surgical placement and optimal post-surgical valve function.
  • This unique device may offer a safer treatment option by providing a biocompatible, patient-specific intervention, resulting in fewer undesirable adverse events.
9003
Fully Bioresorbable Heart Valve Scaffold Supports Native Neovalve Growth to Reduce Future Procedures
  • Replacing a stenotic fetal heart valve with a living autologous valve could possibly cure the complex cardiac anomalies that cause single ventricle physiology.
  • With this approach, the valve has the potential to accommodate patient growth and eliminate the need for multiple heart valve replacements during the patient’s lifetime.
  • The transcatheter nature of this valve deployment makes the procedure similar in risk to a traditional fetal valvuloplasty.
8868
Saliva-Based Multiplexed Assay with 25x Higher Sensitivity to SARS-CoV-2 and Influenza A and B
  • New lateral flow assay device achieves enhanced sensitivity with the same sample concentration, significantly reducing the risk of false negatives.
  • Tunable capillary flow allows sample/reagent to be concurrently delivered to multiple regions, enabling multiplexed and repetitive assays on a single device.
  • Transforms a variety of biological assays and tests performed at clinical laboratories into single-use, disposable dipstick tests to be used at the point of care or home.
9149
Patterned Implantable Devices for Improved Reconstruction of Tubular Tissue Passageway Defects
  • This innovation improves patterned airway stents for passageways or tubular tissues to potentially enable long-passageway reconstructions. 
  • Extrusion-based 3D bioprinting produces a patterned implantable device with higher mechanical strength without increasing the wall thickness of the device.
  • Incorporating auxetic-patterning creates an implantable splinting device for supporting passageway defects in growing patients, such as infants or children.
8831
Dynamic Neck Support for Extended Surgeries and Other Applications
  • This device alleviates neck pain caused by looking down for extended periods of time. 
  • The pulling force changes relative to the extent the head is bent, providing comfortable support both when the head is upright and when bent.
  • In mass production, the cost could be less than $10. 
9159
Quickly and Easily Generate Designer Photopatterned Hydrogel Matrices for Complex Microfluidic Tissue/Organ-on-a-Chip Devices
  • Offers better spatiotemporal control and customization of hydrogel crosslinking and cell patterning
  • Provides a viable alternative to PEG-MAL for culturing primary B cells ex vivo and studying their response to antigens
  • Reduces timing and compatibility issues and offers designer flexibility compared to natural matrices
8986
Foot Ankle Orthotic (FAO) Delivers Real-Time Portable, Discreet Haptic Feedback for Patients and Athletes
  • Providing patients with discreet notifications of real-time plantar pressure to improve rehabilitation of foot-ankle injuries between clinical visits can reduce risk of injury strain and minimize long-term damage.
  • Athletes from various sports (e.g., tennis, football, basketball) could prioritize injury prevention during practice and games because of the discreet haptic notifications that bring attention to foot planting techniques via pressure monitoring.
  • The benefits of measuring plantar pressure from the four zones of this device’s insole (heel, toes, medial, and lateral) extend beyond foot-ankle injuries and can be key to diabetic pressure wound prevention as well as knee osteoarthritis therapy.
8944
Portable, Reusable, Micropower Radiation Monitors Provide Real-Time Assessment of Radiation Risk
  • Innovative radiation detection system provides real-time, on-demand, micropower detection in a versatile design.
  • The device materials offer higher conductivity (mobility) than silicon, resulting in reduced power needs (i.e., requiring power only during read-out).
  • Selection and layering of channel and gate materials enables tuning devices for different radiation types.
8084
Custom-Fit Reusable Respiratory Protective Device (RPD) with Continuous Fit Monitoring Improves Comfort and Protection
  • Vastly improves comfort and protection while bringing peace of mind to wearers through a custom fit and continuous monitoring
  • Reduces pressure injuries caused by extended RPD use through both a customized fit and alerts to the wearer when the RPD should be adjusted or removed
  • Minimizes exposures to workplace hazards by immediately detecting leakage during RPD use and alerting the wearer to adjust the device
8876, 9089, 9090, 9091
High-Precision, Hands-Free Remote Control of Complex Robotic Systems Via Eye Movements
  • This two-camera eye-tracking system (TCES) integrates a commercial eye tracker with machine-learning technology for continuous real-time classification of gaze and eye directions for robotic arm control. 
  • The system provides highly accurate classification for four directions of eye movement and has achieved 99.99% accuracy in studies.
  • Using simple eye movement, the TCES offers low-cost, high-precision control of external devices/hardware for people with disabilities, surgery robots, warehouse systems, construction tools, and more. 
9184
Customized 3D-Printed Bioresorbable Heart Valves
  • Resorbable, patient-specific heart valves offer great flexibility for treating a wider range of conditions and patients than traditionally manufactured heart valves. 
  • Customizable valves potentially decrease complications due to poor fit and the need for reinterventions.
  • Selecting materials for optimal mechanical properties, thermodynamic properties, chemical properties, and surface chemistry and morphology reduces mismatch between device and tissue, potentially improving performance and patient outcomes.
8893
Paper-Based Multi-Well Depletion Enzyme-Linked Immunosorbent Assay (ELISA) Enables Point-of-Care (POC) Testing
  • Paper-based lateral flow assay automatically performs multi-well ELISA testing for POC titer measurements.
  • Simplifies ELISA testing by eliminating the need for centralized laboratories staffed with trained personnel who perform multiple steps in a specific sequence to execute the assay workflow.
  • Transforms a variety of ELISA-based tests into single-use, disposable dipstick tests to be used at the point of care or at home.
9124
Electric Field Treatment Creates Safe, Effective Antimicrobial Surfaces
  • Creates safe, effective antimicrobial surfaces via bacteria inactivation without the use of chemicals
  • Targets cell membranes or capsid, is less likely to induce antimicrobial resistance, and should be effective for antibiotic-resistant bacteria
  • Requires very short electrical pulses to achieve effective bacteria inactivation, potentially leading to better antifouling performance
9130
Parametric Resonance Approach for Efficient, Versatile Acoustic Power Transfer for Implantable/Wearable Devices, Sensing, and Communications
  • New class of transducers utilizes parametric resonance to convert acoustic energy from an ultrasonic source to a sustained electrical signal. 
  • Technology powers implantable biomedical devices, small wearable sensors, and other wireless charging applications.
  • Simple yet robust generation of stable electromechanical frequency combs is also possible in both air and liquid environments using a capacitive micro-resonator array.
7635, 9075
Wearable Ocular Electronics with Virtual Reality Solution for Effective Home-Based Vision Therapy
  • The first fully portable and wireless ocular electronic system in a VR environment provides an effective, home-based visual therapy program.
  • The integrated wearable system has a data classification algorithm to provide high-fidelity, real-time detection of eye vergence to treat eye disorders.
  • Running a VR system on a smartphone can create “virtual therapies” that can be used anywhere anytime.
7916
Reducing Intraocular Pressure in Glaucoma Patients Without Drugs or Surgery via a Simple Hydrogel Injection
  • Hydrogel injections alleviate elevated intraocular pressure (IOP) with fast results and extended impact. 
  • Surgery-free approach eliminates the risk of tissue damage caused by a surgical incision or laser application.
  • Simplified and effective treatment process from standard daily drug intake to a brief office visit only once every 4-6 months.
8467