Available Technologies by Category
Scalable Manufacturing Approach of Graded Polymer Thin Film Has Potential for Widespread Use
  • Combines slot die coating with a custom roll-to-roll imaging system to allow for efficient, rapid, and scalable fabrication of high-quality gradient thin films.
  • An improved manufacturing process over existing techniques because it uses broad material combinations and yields higher quality patterned thin films.
  • Incorporates multiple materials to increase the application of patterned thin films across industries, including microelectronics, energy technologies, and environmental systems.
Electric Field Treatment Creates Safe, Effective Antimicrobial Surfaces
  • Creates safe, effective antimicrobial surfaces via bacteria inactivation without the use of chemicals
  • Targets cell membranes or capsid, is less likely to induce antimicrobial resistance, and should be effective for antibiotic-resistant bacteria
  • Requires very short electrical pulses to achieve effective bacteria inactivation, potentially leading to better antifouling performance
Microrobots for Neurosurgery Applications
  • Minimally invasive: Significantly reduces invasiveness of procedures in comparison to current macroscale, neurosurgical robots 
  • Precise control: Uses 3D position data of the microrobots on the brain surface in a closed-loop system to adjust the magnetic field parameters (i.e., magnitude, frequency, phase, and direct current [DC] offset of each coil) as well as the forces the robots exert to the biopsy tissue
  • Facilitates movement: Employs microfabricated shapes that dictate the microrobot's movements, limits their contact with the brain surface to reduce adhesion, and may also provide a means for the robot to propel itself in fluid
Cascaded Nickel Hard Mask
  • Substantially deeper etches: Because a very thick metal mask can be created, a wide range of µm features can be etched in a variety of III-Nitride semiconductors, allowing for extremely high voltage devices that require thicker layer structures
  • Robust: This method has demonstrated highly consistent and effective protection against the kind of damage that is typical with standard fabrication methods
  • Scalable: The nickel hard mask with cascaded e-beam evaporation and sputtering metal deposition method can readily be applied to the large-scale production of electronic devices
p-type Be-Doped AlN Films and Layered Films
  • Enabling: Leverages MME method to provide the first access to p-type AlN:Be films, a superior ultra-wide bandgap semiconductor material good for high-power, high-temperature diodes and transistors
  • Ease of fabrication: Avoids costly and complicated methods unfavorable for beryllium doping
  • Improved breakdown performance: Achieves high reverse breakdown voltage—a significant advantage over WBG materials such as silicon carbide (SiC) and GaN
8810, 8666, 8786
Integrated Alkali Dispenser Collimator
  • Precise: Reducing the “spread” of vapor via collimation can reduce potential signal-to-noise ratio degradation and avoid contamination of nearby electronic components.
  • Simple: Generating a directed atomic beam from the dispenser can be achieved via integrated packaging.
  • Cooler: Placing a spacer material between the dispenser and collimator creates a sealed gap that not only prevents leakage, but also allows the vapor to cool (via rapid thermalization with the collimator plate).
Micro Ammonia Production System (MAPS)—Systems and methods for making nitrogen-based compounds
  • Higher yield and efficiency: Uses hollow hybrid nanoparticles instead of solid nanoparticles for a three-fold enhancement in electrocatalytic activity due to the increased surface area and higher number of successful reactant collisions
  • Sustainable production: Leverages renewable electricity sources and offers clean and sustainable ammonia electrosynthesis, unlike the current industrial method for ammonia production that is energy intensive and heavily relies on fossil fuels
  • Simplified process: Enables production of ammonia via gas-phase system with few or no additional steps for separation and purification
Skin-Conformal Wearable Stress Monitor Delivers Greater Precision and Continuous, Wireless Monitoring with Comfort and Flexibility
  • All-in-one: The personal adhesive bandage-like single device platform offers wireless, multi-data sensing by simply mounting it on the skin.
  • Disposable: This wearable device is fully disposable after the use and the measured data can be simply sent to the cloud via a tablet or smartphone app.
  • Compact: The unique, thin design of this bioelectric device is one-sixth the volume of current market offerings—weighing less than 7 g, including its rechargeable battery.
Purely Passive Radio-Frequency Identification
  • Powerful: Projected to support energy harvesting sensors at distances over 100 meters from readers and/or radio transmission sources
  • Efficient: Enables conversion of RF energy at higher efficiency and at higher output voltages than current electronic energy harvesting methods
  • Widely applicable: May advance RFID applications in a wide range of fields including computing, sensing, and communication
Sustainable Combination Technology Delivers a Long-Lasting Self-Powered Battery
  • Continuous: Regulates power harvested in the presence of constant mechanical motion to store excess energy while pushing a constant voltage to the external load
  • Eco-friendly: Reduces the need for consumers and technology developers to utilize supply-limited traditional batteries that are thrown away after a short use and could leak harmful chemicals into the environment
  • Sustainable: Eliminates the need to mine an additional power supply by harvesting energy from underutilized electrostatic induction found in naturally occurring mechanical motion
Heat Dissipation for Microelectronic Systems via Capillary Trap
  • Effective: Dissipates large heat fluxes via 3D heat spreading and evaporative cooling that could approach kW/cm2 and beyond while keeping the surface temperature under 90oC
  • Preventive: Mitigates coolant dry-out at the critical heat flux levels that result in a rapid and large temperature rise and thus cause device burn-out
  • Efficient: Exploits high cooling capabilities associated with phase-change heat transfer through evaporation
Utilizing Impedance Spectroscopy for Advanced Characterization of Particles
  • Comprehensive: Simultaneously measures both spatial and dielectric properties of particles
  • Streamlined: Helps resolve signal interference from coincident cells—a challenge of other assessment techniques
  • Precise: Offers complex impedance as a new level of particle feature assessment, integrating it with other measurements such as elasticity and size for more predictive analyses
All-Electronic Immunophenotyping Device for Point-of-Care Testing
  • Convenient: Provides an all-electronic immunophenotyping process with straightforward equipment and techniques
  • Low cost: Performs sophisticated, multistep analyses in a system that is affordable enough for point-of-care settings
  • Flexible: Allows for the easy immobilization of multiple antibodies in the device—a shortcoming of current systems
8045, 8047
Scalable Microfluidic Device with Multiple Constriction Channels for High-Throughput Mechanophenotyping
  • High throughput: Addresses the low-throughput challenges of other similar technologies by handling a sample volume near that of a Coulter counter
  • Low cost: Eliminates the need for costly equipment, highly trained personnel, and long processing times that come with other measuring processes
  • Scalable: Uses a frequency division scheme so that multiple copies of the system can operate concurrently
Measuring Surface Antigen Expression via Microflow Cytometry
  • Portable: This innovation uses a disposable, handheld device without bulky or costly equipment, which is expected to be especially useful in low-resource settings.
  • Simple: It is designed to achieve results similar to those from a commercial flow cytometer but without requiring initial purification.
  • Recoverable samples: Unlike commercial systems, the analyzed sample can be recovered for further tests at the end of the analysis.
7913, 8048
Fully Integrated, Piezoelectric Standalone MEMS Frequency Combs
  • Compact: Provides a fully integrated package with a smaller footprint (30 μm x 30 μm) compared with CMOS-MEMS configurations
  • Robust: Offers higher sensitivity and enhanced detection limit compared with the previous state of the art
  • Low noise: Lowers shot noise levels associated with electronics and MEMS circuitry by eliminating the need for circuitry like electronic amplifiers
Optical Architecture Enables High-Performance Chips
  • High performance: Provides efficient, practical, and manufacturable optical computing solutions for a variety of platforms
  • Efficient: Permits a new way of designing high-performance computing and decision-making tasks using manufacturable solutions with high-speed processing, despite fabrication imperfections
  • Flexible: Offers photonic chips in a variety of material platforms (i.e., silicon, silicon nitride) and meta-surface arrays implemented in hybrid platforms that combine dielectrics and nonlinear/reconfigurable materials
Hybrid Meta-Surfaces for Active, Non-Volatile Light Manipulation
  • Fast: Enables highly dense pixels with fast (nanosecond) switching capability
  • Scalable: Can be fabricated with features down to nanometer sizes; the overall device can incorporate several meta-surfaces with different features over a large-size wafer
  • Agile: Offers high switching robustness (up to 1012 cycles)
Hybrid Triboelectric Nanogenerator Harvests Mechanical and Electrical Energy
  • Sustainable: Harvests energy from the environment to minimize the use of non-renewable materials for power
  • Highly efficient: Exhibits an unprecedented conversion efficiency of 50% to 85%, an area power density of 313 watts per square meter, and a volume power density of 340 kilowatts per cubic meter
  • Powerful: Integrates with several other TENGs for output power of 1 megawatt
Optical Wireless Communications System Self-Powered by Triboelectric Nanogenerator
  • High capacity: Utilizes optical electromagnetic frequencies for transmission to bypass the crowding from other wireless service providers
  • Sustainable: Sources renewable energy via the TENG
  • Practical: Contains parameters and techniques that can be optimized for different circumstances