Available Technologies by Category
Tunable Membrane-Based Wastewater Treatment and Resource Recovery
  • Customizable membrane structure and surface properties provide selective removal of contaminants of emerging concerns (CEC) and recovery of valuable components.
  • An enlarged membrane surface area, combined with a gutter effect from the interlayer, results in nearly double the water permeability of current filtration membranes.
  • Achieves high-performance recovery of essential nutrients/fertilizers that are free of CECs.
8633
Scalable Manufacturing Approach of Graded Polymer Thin Film Has Potential for Widespread Use
  • Combines slot die coating with a custom roll-to-roll imaging system to allow for efficient, rapid, and scalable fabrication of high-quality gradient thin films.
  • An improved manufacturing process over existing techniques because it uses broad material combinations and yields higher quality patterned thin films.
  • Incorporates multiple materials to increase the application of patterned thin films across industries, including microelectronics, energy technologies, and environmental systems.
8994
Lymphatic System-Specific Lipid Nanoparticles
  • This platform technology improves current targeting to lymphatic tissues and specifically lymphatic endothelial cells.
  • Provides superior tissue targeting and functional delivery of mRNA to lymphatics via loco-regional dermal or subcutaneous avenues.
  • mRNA-based platforms offer a transient and less immunogenic method of delivery compared to protein therapeutics or adeno-associated virus-based platforms.
9056
Sustained Lymphatic Drug Delivery System Potentially Improves Efficacy and Safety of Immunotherapy and Targeted Therapies
  • This sustained lymphatic drug delivery system guides therapeutics and imaging agents to the injection site, lymphatic vessels, and lymph nodes. 
  • Sustained lymphatic delivery enables lower dosing and fewer administrations to potentially improve therapeutic response while reducing adverse effects and costs.
  • The simplicity of a vaccine-like, sustained drug release injection allows use at less expensive community health centers.
8637
Superluminescent Light Projection (SLP) System Decreases Nanoscale Printing Costs by 10–50 Times
  • This superluminescent light projection (SLP) system decreases overall nanoscale printing costs by 10–50 times. 
  • A parallel writing mechanism supports higher throughput speeds: up to 100 times higher than existing metal printing methods and four times higher than existing polymer printing methods. 
  • SLP creates sharp-edged images with minimal speckling patterns, resulting in high-resolution images and structures on both polymer and metal-based films. 
9066
Electric Field Treatment Creates Safe, Effective Antimicrobial Surfaces
  • Creates safe, effective antimicrobial surfaces via bacteria inactivation without the use of chemicals
  • Targets cell membranes or capsid, is less likely to induce antimicrobial resistance, and should be effective for antibiotic-resistant bacteria
  • Requires very short electrical pulses to achieve effective bacteria inactivation, potentially leading to better antifouling performance
9130
Microrobots for Neurosurgery Applications
  • Minimally invasive: Significantly reduces invasiveness of procedures in comparison to current macroscale, neurosurgical robots 
  • Precise control: Uses 3D position data of the microrobots on the brain surface in a closed-loop system to adjust the magnetic field parameters (i.e., magnitude, frequency, phase, and direct current [DC] offset of each coil) as well as the forces the robots exert to the biopsy tissue
  • Facilitates movement: Employs microfabricated shapes that dictate the microrobot's movements, limits their contact with the brain surface to reduce adhesion, and may also provide a means for the robot to propel itself in fluid
8749
Cluster-Wells: Isolating Aggressive Tumor Cell Clusters for Improved Cancer Diagnosis and Treatment
  • High performing: Demonstrates superior abilities to isolate CTCs without clogging the system or dissociating the clusters
  • Low cost: Shows high potential for large-scale production because it uses simple equipment and a straightforward process
  • Versatile: Isolates CTC clusters of any cancer type and uses hardware that can be modified to accommodate various devices
8203
Thin Current Spreading Layers Improve Breakdown Performance
  • Increases current uniformity: Improves cumulative current flow distribution from ~40% to ~100% of the p-type contact
  • Improves breakdown performance: Avoids premature breakdown at the mesa edges making quasi-vertical devices comparable in performance to more expensive vertical devices.
  • Improves Immunity to Etch Variation: Because current flow is no longer crowded along the mesa edges, process related variations in the mesa etching are less important to the diode performance.
8789
Low-Power Real-Time Ionizing Radiation Detector
  • Sensitive: Detects the charge generated from the interactions of ionizing radiation within matter with a high level of precision and discerns X-ray pulses of varying dose
  • Scalable: Covers a significantly larger detection area than other methods, ranging from 60,000 square micrometers to one square millimeter
  • Responsive: Responds within microseconds and proportionately with the overall radiation dose when exposed to X-rays of varying tube voltage (energy) and tube current (number of particles)
8780
Cascaded Nickel Hard Mask
  • Substantially deeper etches: Because a very thick metal mask can be created, a wide range of µm features can be etched in a variety of III-Nitride semiconductors, allowing for extremely high voltage devices that require thicker layer structures
  • Robust: This method has demonstrated highly consistent and effective protection against the kind of damage that is typical with standard fabrication methods
  • Scalable: The nickel hard mask with cascaded e-beam evaporation and sputtering metal deposition method can readily be applied to the large-scale production of electronic devices
8790
Self-Powered Highly Stretchable Sensing Interface for Gesture Recognition
  • Self-contained: Includes a signal processing pipeline, providing gesture recognition for an extensive range of input modalities without the need for external power or sensing equipment
  • Assistive: Enables eyes-free, unobtrusive, and ergonomic interaction with computing devices embedded in wearables
  • Versatile: Demonstrates far-reaching potential for applications beyond gesture recognition including in actuation and data acquisition
7987
p-type Be-Doped AlN Films and Layered Films
  • Enabling: Leverages MME method to provide the first access to p-type AlN:Be films, a superior ultra-wide bandgap semiconductor material good for high-power, high-temperature diodes and transistors
  • Ease of fabrication: Avoids costly and complicated methods unfavorable for beryllium doping
  • Improved breakdown performance: Achieves high reverse breakdown voltage—a significant advantage over WBG materials such as silicon carbide (SiC) and GaN
8810, 8666, 8786
Integrated Alkali Dispenser Collimator
  • Precise: Reducing the “spread” of vapor via collimation can reduce potential signal-to-noise ratio degradation and avoid contamination of nearby electronic components.
  • Simple: Generating a directed atomic beam from the dispenser can be achieved via integrated packaging.
  • Cooler: Placing a spacer material between the dispenser and collimator creates a sealed gap that not only prevents leakage, but also allows the vapor to cool (via rapid thermalization with the collimator plate).
8872
Micro Ammonia Production System (MAPS)—Systems and methods for making nitrogen-based compounds
  • Higher yield and efficiency: Uses hollow hybrid nanoparticles instead of solid nanoparticles for a three-fold enhancement in electrocatalytic activity due to the increased surface area and higher number of successful reactant collisions
  • Sustainable production: Leverages renewable electricity sources and offers clean and sustainable ammonia electrosynthesis, unlike the current industrial method for ammonia production that is energy intensive and heavily relies on fossil fuels
  • Simplified process: Enables production of ammonia via gas-phase system with few or no additional steps for separation and purification
8056
Superior Supercapacitors
  • High performance: Achieves average energy densities as high as 90 Wh/Kg
  • Scalable: Leverages a low-cost PAN fabrication process that dramatically increases surface area
  • Widely applicable: Demonstrates potential for advances in a variety of energy storage and capacitive water desalination applications
6201
Skin-Conformal Wearable Stress Monitor Delivers Greater Precision and Continuous, Wireless Monitoring with Comfort and Flexibility
  • All-in-one: The personal adhesive bandage-like single device platform offers wireless, multi-data sensing by simply mounting it on the skin.
  • Disposable: This wearable device is fully disposable after the use and the measured data can be simply sent to the cloud via a tablet or smartphone app.
  • Compact: The unique, thin design of this bioelectric device is one-sixth the volume of current market offerings—weighing less than 7 g, including its rechargeable battery.
8414
Purely Passive Radio-Frequency Identification
  • Powerful: Projected to support energy harvesting sensors at distances over 100 meters from readers and/or radio transmission sources
  • Efficient: Enables conversion of RF energy at higher efficiency and at higher output voltages than current electronic energy harvesting methods
  • Widely applicable: May advance RFID applications in a wide range of fields including computing, sensing, and communication
7194
Sustainable Combination Technology Delivers a Long-Lasting Self-Powered Battery
  • Continuous: Regulates power harvested in the presence of constant mechanical motion to store excess energy while pushing a constant voltage to the external load
  • Eco-friendly: Reduces the need for consumers and technology developers to utilize supply-limited traditional batteries that are thrown away after a short use and could leak harmful chemicals into the environment
  • Sustainable: Eliminates the need to mine an additional power supply by harvesting energy from underutilized electrostatic induction found in naturally occurring mechanical motion
6418
Heat Dissipation for Microelectronic Systems via Capillary Trap
  • Effective: Dissipates large heat fluxes via 3D heat spreading and evaporative cooling that could approach kW/cm2 and beyond while keeping the surface temperature under 90oC
  • Preventive: Mitigates coolant dry-out at the critical heat flux levels that result in a rapid and large temperature rise and thus cause device burn-out
  • Efficient: Exploits high cooling capabilities associated with phase-change heat transfer through evaporation
6272