Available Technologies by Category
Monitor Vehicle Location and Maintain Vehicle Health During Long-Term Storage
  • Vehicle health and location monitoring system automatically establishes a mesh network for vehicle fleet monitoring by a human, drone, or mobile robot.
  • Checks battery and other vehicle health status as well as determines locations of all connected vehicles in storage.
  • When a vehicle is found with low battery levels, a mobile robot can safely provide a charge to the battery to get the vehicle running.   
8938
Deployable Critical Active Learning (DECAL) System Offers Better Characterization for Improved Diagnostics and Imaging
  • The deployable critical active learning (DECAL) system’s bi-modal interface enables better characterization with large training sets that generate more accurate output for higher precision.
  • The algorithm used during the initialization period creates a framework that can be expanded and generalized to any data method and application.
  •  The DECAL algorithm samples uniquely important, unlabeled data to aid existing active learning systems in generalizing more quickly, providing faster diagnosis statistics.
9099
Buoyant Platform Assembly Improves PCM Thermal Management
  • Enhances solidification: Incorporating highly localized agitation via a stirring whip rod, this technology seeds solidification to improve this often-arduous phase of PCM thermal cycling. 
  • Prevents scale build-up: This technology reduces the instance of sheets of solid PCM forming on the heat sink. The high-frequency, extensible whip rod orbits around the passageway to facilitate nucleation (creating improved solidification), while preventing scale build-up on the interior passageway surfaces. 
  • Customizable: The structural design allows the platform to be tailored to the effective density of the PCM material, enabling it to stay between the liquid and solid phases. 
8835
Lightweight, Versatile Cryogenic Conductors
  • Lithium exhibits lower atomic mass, higher power density, and lower losses under cryogenic conditions
  • Conductors such as lithium become even more power-dense at lower temperatures, exhibiting improved electrical performance 
  • Cladding with copper enables lithium to be drawn using standard wire-drawing techniques and tools
8729
Vapor Phase Infiltration Produces Solar Cells with Greater Thermal Stability
  • Stability: Decreasing spiro-OMeTAD crystallization improves thermal stability of hole transport layers within perovskite solar cells (PSCs) 
  • Longevity: Eliminating the main cause of PSCs’ operational degradation increases the overall product lifespan
  • Efficiency: Preventing the delamination of the layers transporting electronic charge has doubled the power conversion efficiency of modified PSCs
9034
Atomic Metal Catalysts
  • Innovative: Generates new isomers by changing the order in which atoms are added in a hetero-atomic cluster (can maximize available catalytic sites)
  • Efficient: Creates and optimizes active isomers of atomic metals such as Au and Pd, increasing the catalytic efficiency of these high-demand metals (requires minimal precious catalytic metal)
  • Scalable: Provides a scalable process resulting in theoretically predictable catalytic properties
6451, 5217
Chip-Scale Electrochemical Double-Layer (ECDL) Supercapacitors
  • Decreased size: Minimizes space that does not contribute to volumetric density and is drastically smaller than conventional ECDL capacitors, allowing capacitor-dependent devices to shrink considerably
  • High power: Achieves gravimetric energy densities of over 100 watt-hours per kilogram
  • Improved performance: The vertically aligned graphene-functionalized carbon nanotubes Offers high porosity and surface area for improved pseudocapacitance by vertically aligning graphene-functionalized nanotubes
6573
Superior Supercapacitors
  • High performance: Achieves average energy densities as high as 90 Wh/Kg
  • Scalable: Leverages a low-cost PAN fabrication process that dramatically increases surface area
  • Widely applicable: Demonstrates potential for advances in a variety of energy storage and capacitive water desalination applications
6201
Sustainable Combination Technology Delivers a Long-Lasting Self-Powered Battery
  • Continuous: Regulates power harvested in the presence of constant mechanical motion to store excess energy while pushing a constant voltage to the external load
  • Eco-friendly: Reduces the need for consumers and technology developers to utilize supply-limited traditional batteries that are thrown away after a short use and could leak harmful chemicals into the environment
  • Sustainable: Eliminates the need to mine an additional power supply by harvesting energy from underutilized electrostatic induction found in naturally occurring mechanical motion
6418
Energy Storage for Automotive/Portable Applications
  • Increased storage density — backbone offers high surface area for hydrogen storage
  • Fast and easy — polymer readily folds and unfolds for hydrogen storage and fast release in response to actuation
  • Suitable for packaging — uses compliant polymers as a matrix to assume any form factor
3626
Novel Electrochemical Method for Extracting Lithium from Seawater
  • Fast: This method shortens the time for lithium extraction from seawater from years to days.
  • Energy-efficient: The STLFP has outstanding electrochemical storage properties and working potential, which can achieve high energy efficiency and obtain great lithium recovery.
  • Eco-friendly: The recovery process requires no additional heating or chemicals.
8355
Highly Efficient, Durable Cathodes for Solid Oxide Fuel Cells (SOFCs)
  • More stable: The technique used enhances cathode durability while maintaining the high-kinetic electrode structure
  • Stackable: The cathode design is suitable for implementation in a fuel cell stack
  • Fast: The combination of nanoparticles and conformal coatings provides increased reaction sites and rapid transport paths
7256
Three-Dimensionally Textured Photovoltaic (PV) Cells
  • Powerful: Improves probability of absorption via a novel light-trapping geometry
  • Practical: Eliminates the need for heavy, complex, costly, and failure-prone mechanical systems required by traditional planar PV cells to track the sun
  • Reliable: Improves photon absorption probability even at off-normal azimuth angles, leading to more predictable performance across all seasons for terrestrial applications
2922
Non-Aqueous 2D Material-Based Hydrogen Isotope Separation
  • Increased efficiency - reduction of mechanical issues found in existing proton conductors 
  • Increased performance - solid state proton conductor is rigid eliminating concern of flexibility of polymer membranes in existing devices
8043
Linear-Grating Triboelectric Generator
  • Versatile: can be applied to TEGs if different configurations
  • Enhanced output: linear grating is introduced to the sliding elements, resulting in enhancements of output charge, output current, and current frequency
6273
Triboelectric Nanogenerator for Large-Scale Energy Harvesting
  • Increased power output — scaled up NG to power hundreds of devices, not just one
  • Improved structure — more inductive charges will be generated for this new design
6247
Droplet Impingement Planar-Array-Micro-Reactor
  • Component Integration – high degree of multi-functionality
  • Scalability – throughput
  • Simple  simple operations and robustness
4099
A Machine Learning Algorithm for Material Property Predictions
  • Faster: this approach provides a speed up of several orders of magnitude relative to the current methods
  • Accuracy: despite faster speed, accuracy is not compromised
  • Efficient: solves electronic structure problems
7969
Methods of Recycling and Replacing Lithium Ion Batteries
  • Low cost – low energy use compared to other methods
  • Environmentally friendly – low emissions
  • High purity – accurate separation of high value metals from other components
7892, 7941
Enhanced Performance of Lithium-Ion Batteries
  • Increases efficacy of Li-ion batteries – increases conductivity
  • Product longevity – increased stability during charging and discharging
  • Enables practical implementation – can be applied on a larger scale
7854