Available Technologies by Category
Two-Phase Thermal Management System for Integrated Motor Cooling
  • High-performance: Utilizes three-dimensional silicon carbide packaging and novel drive topologies with reduced switching losses, leading to increased power density and lower motor system size and weight
  • Embedded: Integrates with the motor and drive electronics rather than requiring an externally attached heat exchanger system
  • Efficient: Dramatically increases volumetric heat removal rates in electric motor systems by employing a wick structure designed to assist liquid delivery to enable evaporative cooling
8280
A Method for Creating a Protective Cap Layer for Semiconductor Wafers
  • Protective: Provides a thin protective layer or “cap” after the first layer is deposited, protecting the underlying structure from atmospheric contaminants
  • Robust: Enables realization of the advantages of hybrid growth processes by eliminating performance-degrading contaminants and resulting defects
  • Advanced: Offers superior protection against contamination compared with simple chemical cleaning methods utilized in other systems, especially against impurity species such as oxides
8435
Chip-Scale Electrochemical Double-Layer (ECDL) Supercapacitors
  • Decreased size: Minimizes space that does not contribute to volumetric density and is drastically smaller than conventional ECDL capacitors, allowing capacitor-dependent devices to shrink considerably
  • High power: Achieves gravimetric energy densities of over 100 watt-hours per kilogram
  • Improved performance: The vertically aligned graphene-functionalized carbon nanotubes Offers high porosity and surface area for improved pseudocapacitance by vertically aligning graphene-functionalized nanotubes
6573
Superior Supercapacitors
  • High performance: Achieves average energy densities as high as 90 Wh/Kg
  • Scalable: Leverages a low-cost PAN fabrication process that dramatically increases surface area
  • Widely applicable: Demonstrates potential for advances in a variety of energy storage and capacitive water desalination applications
6201
Fully Passive, Long-Range Radio-Frequency Identification (RFID) via 5G
  • Large coverage: Provides a unique combination of large angular coverage and turn-on sensitivity in both planar and bent configurations
  • Long range: Demonstrates the potential for RFIDs with practical reading ranges over 1.8 km
  • Scalable: Scales in size to a precise degree, enabling selection of the optimal tradeoff between size and harvested power/reading range
8141, 8439
Purely Passive Radio-Frequency Identification
  • Powerful: Projected to support energy harvesting sensors at distances over 100 meters from readers and/or radio transmission sources
  • Efficient: Enables conversion of RF energy at higher efficiency and at higher output voltages than current electronic energy harvesting methods
  • Widely applicable: May advance RFID applications in a wide range of fields including computing, sensing, and communication
7194
Sustainable Combination Technology Delivers a Long-Lasting Self-Powered Battery
  • Continuous: Regulates power harvested in the presence of constant mechanical motion to store excess energy while pushing a constant voltage to the external load
  • Eco-friendly: Reduces the need for consumers and technology developers to utilize supply-limited traditional batteries that are thrown away after a short use and could leak harmful chemicals into the environment
  • Sustainable: Eliminates the need to mine an additional power supply by harvesting energy from underutilized electrostatic induction found in naturally occurring mechanical motion
6418
Zeolite Membrane Sieves Fabricated on Low-Cost Alumina Hollow Fiber Substrates
  • High performance: Enables lower-cost, scalable, membrane-based molecular separation
  • Convenient: Can form a standalone complete separation or reduce bottlenecks in conventional separation processes
8080, 8167
Drive Belt with Surface Texture to Minimize Vibrations
  • Effective: Demonstrated significant reduction in vibration compared with flat, untextured belt surfaces in preliminary testing 
  • Simple: Provides a straightforward and easy-to-implement solution to a widespread problem 
  • Economical: Offers a far less expensive means of maintaining the operation of machinery compared with replacing worn belts or employing complex tension systems
8307
Heat Dissipation for Microelectronic Systems via Capillary Trap
  • Effective: Dissipates large heat fluxes via 3D heat spreading and evaporative cooling that could approach kW/cm2 and beyond while keeping the surface temperature under 90oC
  • Preventive: Mitigates coolant dry-out at the critical heat flux levels that result in a rapid and large temperature rise and thus cause device burn-out
  • Efficient: Exploits high cooling capabilities associated with phase-change heat transfer through evaporation
6272
Next-Generation Flow Battery for Large-Scale Energy Storage at One-Tenth the Cost
  • Higher power density: This design has achieved ultra-high power densities of 630 W/Ldevice (charge) and 170 W/Ldevice (discharge), compared to existing flow battery designs that achieve only 500 W/Ldevice (charge) and 90 W/Ldevice (discharge).
  • Ultra-high current density: The design has achieved current densities of >300 mA/cm3 per device.
  • Dramatically lower cost: The elimination of parts reduces fabrication costs by 90%. Cost is ~$330 rather than ~$4,400.
8284, 8571
Energy Storage for Automotive/Portable Applications
  • Increased storage density — backbone offers high surface area for hydrogen storage
  • Fast and easy — polymer readily folds and unfolds for hydrogen storage and fast release in response to actuation
  • Suitable for packaging — uses compliant polymers as a matrix to assume any form factor
3626
Poroelastic Solutions for Spherical-Tip Indentation
  • Robust: Provides a rigorous theoretical base that takes into account poroelastic coupling and the effects of Poisson’s ratio as well as the compressibility of both fluid and solid phases on force relaxation
  • Intelligent: Can be used with sensors and processors to automatically direct an indentation tool and record pertinent data
  • Flexible: Accommodates both permeable and impermeable indentation tools
7870
SlothBot: Sustainable Solution for Studying Climate Change
  • Wide-ranging: Can switch between two different wire branches and can therefore traverse a whole mesh of wires
  • Sustainable: Utilizes solar energy and runs with a low power consumption, making the robot highly energy efficient
  • Low risk: Employs a fail-safe design that protects the robot from damage in the event of a mechanical failure
8194
Highly Efficient, Durable Cathodes for Solid Oxide Fuel Cells (SOFCs)
  • More stable: The technique used enhances cathode durability while maintaining the high-kinetic electrode structure
  • Stackable: The cathode design is suitable for implementation in a fuel cell stack
  • Fast: The combination of nanoparticles and conformal coatings provides increased reaction sites and rapid transport paths
7256
Hybrid Triboelectric Nanogenerator Harvests Mechanical and Electrical Energy
  • Sustainable: Harvests energy from the environment to minimize the use of non-renewable materials for power
  • Highly efficient: Exhibits an unprecedented conversion efficiency of 50% to 85%, an area power density of 313 watts per square meter, and a volume power density of 340 kilowatts per cubic meter
  • Powerful: Integrates with several other TENGs for output power of 1 megawatt
6606
Three-Dimensionally Textured Photovoltaic (PV) Cells
  • Powerful: Improves probability of absorption via a novel light-trapping geometry
  • Practical: Eliminates the need for heavy, complex, costly, and failure-prone mechanical systems required by traditional planar PV cells to track the sun
  • Reliable: Improves photon absorption probability even at off-normal azimuth angles, leading to more predictable performance across all seasons for terrestrial applications
2922
Fabricating High-Power Solar Cells with a Novel Boron Emitter
  • Efficient: Demonstrates a competitive level of efficiency road map of over 24.2%
  • Cost-effective: Offers a simplified approach for fabricating TOPCon solar cells while still maintaining their efficiency
  • Sustainable: Improves upon current renewable energy solutions that provide alternatives to fossil fuel–based energy consumption
7991
Optical Wireless Communications System Self-Powered by Triboelectric Nanogenerator
  • High capacity: Utilizes optical electromagnetic frequencies for transmission to bypass the crowding from other wireless service providers
  • Sustainable: Sources renewable energy via the TENG
  • Practical: Contains parameters and techniques that can be optimized for different circumstances
7863
High-Performance Broadband Photodetector and Power Generator
  • Versatile: Adjusts for several different parameters, including light intensity, switching frequency, and illumination area
  • Efficient: Provides voltage that is easily converted for use through a medium that is small, low cost, and easily fabricated
  • Highly sensitive: Operates with ultra-high light sensitivity, even at very low light intensity, and fast response speeds
7965