Available Technologies by Category
Hydrogel-Based Artificial Ligaments Offer Substantial Improvements for ACL Reconstruction Therapies
  • This biocompatible hydrogel-based device is designed to reproduce natural ligament/tendon function to decrease the incidence of immune responses that lead to chronic inflammation.
  • An alternative to standard artificial ligaments and tendons, the device is designed to be placed via non-invasive techniques, making it a safer alternative to current, invasive surgical methods.
  • Non-biodegradable hydrogels are highly durable, potentially increasing the lifespan of the prostheses.
5386
Universal Transcriptional Programming in a Bacteroides Consortium Creates a Foundation to Advance Living Therapeutics
  • Consortium-based, universal transcriptional programming framework is a biotic decision-making technology using genetic circuit compression in a Bacteroides community.
  • Compressed genetic circuit design shortens circuit-building time, offers a compact circuit footprint that allows more complexity, uses fewer resources, and reduces cell communication time. 
  • Has potential applications in living therapeutics, advanced biomanufacturing, and next-generation biosecurity.
9006
Fast, Effective Thrombolytic Agent for Arterial Blood Clots
  • The disulfide dimer of the amino acid cystine, has the potential to be a highly efficient thrombolytic agent for treating dangerous arterial blood clots.
  • During in vitro testing DiNAC dissolved thrombi in as quickly as 90 seconds and reduced the diameter and surface area of certain thrombi by 50–95 percent.
  • DiNAC has the potential to treat multiple conditions associated with arterial thrombus formation and to mitigate life-threatening side effects. 
8007
Thermoformed Polymeric Valved Conduits Offer a Biocompatible, Customizable Heart Valve Replacement Treatment
  • This biocompatible device may reduce adverse events resulting in a lower incidence of post-surgical adverse events for better long-term outcomes.
  • Customizable valve conduits allow patient-specific device creation for potentially easier surgical placement and optimal post-surgical valve function.
  • This unique device may offer a safer treatment option by providing a biocompatible, patient-specific intervention, resulting in fewer undesirable adverse events.
9003
Safe and Effective von Willebrand factor (VWF) Therapeutic to Prevent Arterial Thrombi
  • Using anti-von Willebrand factor (VWF) agent has the potential to be safer and much more effective for preventing the formation of arterial thrombi.
  • Low doses of N-acetylcysteine (NAC) have been shown to reduce the rate of platelet aggregation, while higher doses completely prevented platelet aggregation.
  • Uses the safe, Federal Drug Administration–approved drug NAC that has a known safety profile.
8975
Single Cell Metabolomics Assay
  • The technology makes it possible to identify single cell resolution of lipids and other small molecules in complex tissue types, as well as metabolism mapping specific to different cell types.
  • The measurements found through this can be used to study metabolomic response to drug exposure.
  • The technology can achieve submicron resolution of lipids and other small molecules at anywhere from 200-1000 depth slices, using spatially resolved metabolic profiling.
9023
Measurement and Modeling System Using Cell Signaling Networks
  • The technology quickly identifies cell signaling pathways from a patient biopsy, allowing for personalized treatment approaches to be identified.
  • Measurements can be used to study potential tumor response to drug treatment, through the use of xenografted cells from the patient.
  • 30-100 potential protein pathways and interactions can be measured using a single sample through multiplexing of rapid immunofluorescence.
9022
Fully Bioresorbable Heart Valve Scaffold Supports Native Neovalve Growth to Reduce Future Procedures
  • Replacing a stenotic fetal heart valve with a living autologous valve could possibly cure the complex cardiac anomalies that cause single ventricle physiology.
  • With this approach, the valve has the potential to accommodate patient growth and eliminate the need for multiple heart valve replacements during the patient’s lifetime.
  • The transcatheter nature of this valve deployment makes the procedure similar in risk to a traditional fetal valvuloplasty.
8868
Saliva-Based Multiplexed Assay with 25x Higher Sensitivity to SARS-CoV-2 and Influenza A and B
  • New lateral flow assay device achieves enhanced sensitivity with the same sample concentration, significantly reducing the risk of false negatives.
  • Tunable capillary flow allows sample/reagent to be concurrently delivered to multiple regions, enabling multiplexed and repetitive assays on a single device.
  • Transforms a variety of biological assays and tests performed at clinical laboratories into single-use, disposable dipstick tests to be used at the point of care or home.
9149
Patterned Implantable Devices for Improved Reconstruction of Tubular Tissue Passageway Defects
  • This innovation improves patterned airway stents for passageways or tubular tissues to potentially enable long-passageway reconstructions. 
  • Extrusion-based 3D bioprinting produces a patterned implantable device with higher mechanical strength without increasing the wall thickness of the device.
  • Incorporating auxetic-patterning creates an implantable splinting device for supporting passageway defects in growing patients, such as infants or children.
8831
Quickly and Easily Generate Designer Photopatterned Hydrogel Matrices for Complex Microfluidic Tissue/Organ-on-a-Chip Devices
  • Offers better spatiotemporal control and customization of hydrogel crosslinking and cell patterning
  • Provides a viable alternative to PEG-MAL for culturing primary B cells ex vivo and studying their response to antigens
  • Reduces timing and compatibility issues and offers designer flexibility compared to natural matrices
8986
Sustained Lymphatic Drug Delivery System Potentially Improves Efficacy and Safety of Immunotherapy and Targeted Therapies
  • This sustained lymphatic drug delivery system guides therapeutics and imaging agents to the injection site, lymphatic vessels, and lymph nodes. 
  • Sustained lymphatic delivery enables lower dosing and fewer administrations to potentially improve therapeutic response while reducing adverse effects and costs.
  • The simplicity of a vaccine-like, sustained drug release injection allows use at less expensive community health centers.
8637
“Smart” Feedback-Controlled Bioreactor Platform Enables Consistent High-Yield and High-Quality MSC Products
  • Scaled-down feedback-controlled hollow fiber-based bioreactor enables identifying the critical quality attributes and critical process parameters for high-quantity and high-quality hCT-MSCs for ideal cell growth and efficacy 
  • Provides the controls to maintain optimum conditions and improve expansion yield and cell viability
  • System can be adapted and applied to industrial cell therapy manufacturing and can enable high-yield and high-quality products while minimizing variabilities
8887
Manually Powered Laboratory Mixing Device
  • This manually operated laboratory device mixes and separates solution components at performance levels comparable to existing powered vortexes and centrifuges.
  • The device operates with no external power source, providing labs without access to consistent electrical infrastructure a reliable solution to mixing and separating solution components.
  • This multiuse device is compatible with containers and sample tubes of various sizes and solution amounts.
9096
Melting Microneedle Patches Extend Drug Delivery Applications, Simplify Manufacturing, and Reduce Costs
  • Melting microneedles enable dispersion of both poorly soluble and water-soluble drugs, which eliminates the need for solvents for improved stabilization and broader applications.
  • Melting microneedles shorten manufacturing and drying time, eliminate the need to maintain a cold chain for storage and transportation, and reduce the ultimate cost of the microneedle patch.
  • The safe suppository bases are inexpensive and enable control of the drug release timing.
8904
Novel Nanocarriers Strengthen Therapeutic Delivery, Improves Efficacy
  • Greater therapeutic effectiveness is due to the synergistic work of multiple therapeutic agents (hydrophobic/hydrophilic charged) that can be delivered via this dual-loaded biomaterial.
  • The risk of immunotoxicity to a vaccine is reduced because an adjuvant, which can induce the body’s anti-inflammatory immune response, may be loaded and simultaneously delivered with the vaccine. 
  • The novel nanocarrier has broad market application since it can deliver vaccines, gene therapy, small molecule drugs, and even contrast agents.
8988
Automated Bioreactor Sampling System Can Eliminate Cross-Contamination of Samples
  • Automated bioreactor sampling system maintains sample integrity by changing the syringe between samples
  • In addition to savings related to reduced cross-contamination, automated sampling can further lower costs by reducing hands-on time and speeding sampling.
  • Flexible platform can be used with any type of collected sample.
8886
Efficiently Generating Complex Hydrogel Structures for Tissue/Organ-on-a-Chip Models
  • Faster: Reduces preparation time from several hours to minutes
  • Simplified: Generates complex patterns, including perfusable channels, using light-triggered polymerization of synthetic hydrogels and photomasks rather than current equipment-intensive methods that use laser-based patterning or ablation techniques
  • Lowers regulatory burdens: Using synthetic rather than biological matrices simplifies regulatory hurdles, increases reproducibility from batch to batch, and increases tunability of the mechanical and biochemical properties of the matrix
8838, 8839
patcherBotPHARMA Automated Intracellular Pharmacological Electrophysiology Robot
  • Increased efficiency: Autonomous operation ensures accurate placement of components and creates high success rates for experiment completion.
  • Decreased human effort: Performs typical ligand-gated ionotropic receptor experimentation protocols autonomously for up to a tenfold reduction in operator interaction time over the duration of the experiment
  • Higher experiment yield: Rapidly replicates previous datasets, reducing the time to produce an 8-point concentration response curve from weeks of recording to ~13 hours of recording

 

8717
Simulated Synovial Fluid Offers Potential for Effective Treatment of Knee Osteoarthritis
  • Osteoarthritis (OA)-simulated synovial fluid (simSF) provides the opportunity to evaluate how different cell therapies respond to an OA-like environment.
  • By analyzing OA patient-derived synovial fluid (pdSF) and developing potency assays, researchers created a simSF comparable to pdSF that overcomes patient variability. 
  • The simSF allows for the investigation of OA biology with greater reproducibility of predictive outcomes and could advance effective treatment of knee OA. 
8956