Available Technologies by Category
Microfluidic CODES with Innovative Machine-Learning Analysis
  • Scalable: Set-up allows for the integration of multiple microfluidic devices to increase throughput volume.
  • Versatile: Machine learning analysis can be applied to other microfluidic devices integrated with the same Coulter sensor network.
  • Pragmatic: This innovation improves the capabilities of lab-on-a-chip systems to provide an affordable solution for low-resource settings.
7107, 8032
Utilizing Impedance Spectroscopy for Advanced Characterization of Particles
  • Comprehensive: Simultaneously measures both spatial and dielectric properties of particles
  • Streamlined: Helps resolve signal interference from coincident cells—a challenge of other assessment techniques
  • Precise: Offers complex impedance as a new level of particle feature assessment, integrating it with other measurements such as elasticity and size for more predictive analyses
8049
All-Electronic Immunophenotyping Device for Point-of-Care Testing
  • Convenient: Provides an all-electronic immunophenotyping process with straightforward equipment and techniques
  • Low cost: Performs sophisticated, multistep analyses in a system that is affordable enough for point-of-care settings
  • Flexible: Allows for the easy immobilization of multiple antibodies in the device—a shortcoming of current systems
8045, 8047
Scalable Microfluidic Device with Multiple Constriction Channels for High-Throughput Mechanophenotyping
  • High throughput: Addresses the low-throughput challenges of other similar technologies by handling a sample volume near that of a Coulter counter
  • Low cost: Eliminates the need for costly equipment, highly trained personnel, and long processing times that come with other measuring processes
  • Scalable: Uses a frequency division scheme so that multiple copies of the system can operate concurrently
8031
Measuring Surface Antigen Expression via Microflow Cytometry
  • Portable: This innovation uses a disposable, handheld device without bulky or costly equipment, which is expected to be especially useful in low-resource settings.
  • Simple: It is designed to achieve results similar to those from a commercial flow cytometer but without requiring initial purification.
  • Recoverable samples: Unlike commercial systems, the analyzed sample can be recovered for further tests at the end of the analysis.
7913, 8048
Next-Generation Flow Battery for Large-Scale Energy Storage at One-Tenth the Cost
  • Higher power density: This design has achieved ultra-high power densities of 630 W/Ldevice (charge) and 170 W/Ldevice (discharge), compared to existing flow battery designs that achieve only 500 W/Ldevice (charge) and 90 W/Ldevice (discharge).
  • Ultra-high current density: The design has achieved current densities of >300 mA/cm3 per device.
  • Dramatically lower cost: The elimination of parts reduces fabrication costs by 90%. Cost is ~$330 rather than ~$4,400.
8284, 8571
Innovative Ion Mobility Spectrometry with Open-Air Assembly
  • Protective: Potentially helps protect the technician against contact with ionic hazards
  • Rapid: Separates ions through fast detection of differences in their mass, charge, and cross-section
  • Convenient: Leverages an open-air arrangement that significantly reduces time for experiment setup and sample preparation
4885
SlothBot: Sustainable Solution for Studying Climate Change
  • Wide-ranging: Can switch between two different wire branches and can therefore traverse a whole mesh of wires
  • Sustainable: Utilizes solar energy and runs with a low power consumption, making the robot highly energy efficient
  • Low risk: Employs a fail-safe design that protects the robot from damage in the event of a mechanical failure
8194
Fully Integrated, Piezoelectric Standalone MEMS Frequency Combs
  • Compact: Provides a fully integrated package with a smaller footprint (30 μm x 30 μm) compared with CMOS-MEMS configurations
  • Robust: Offers higher sensitivity and enhanced detection limit compared with the previous state of the art
  • Low noise: Lowers shot noise levels associated with electronics and MEMS circuitry by eliminating the need for circuitry like electronic amplifiers
7875
Facilitating Ultrasound Penetration of the Skull for Diagnosis and Treatment
  • Portable: Designed to enable imaging of the brain via small, mobile ultrasound devices, which may offer greater convenience compared with MRI and CT machines
  • Affordable: May be a lower cost modality compared with leading techniques, such as MRI, CT, or positron emission tomography (PET)
  • Robust: Demonstrates energy transmission through the skull on par with that of an aqueous medium in preliminary testing
8340
Portable Multi-Parameter Cancer Diagnostic Tool
  • Powerful: Simultaneously measures multiple tissue parameters to determine electro-thermo-mechanical properties
  • Disposable: Uses single-use biochip components to eliminate cross-contamination
  • Versatile: Uses a variety of other micromotion-capable actuators and extends to other manufacturing techniques and different length scales
7619
Tautomeric Sensing with a Covalent Organic Framework
  • Fast: Provides highly responsive color change within seconds
  • Passively reversible: Does not require external stimuli for regeneration
  • Long-term stability: Sensing ability extends for months
8262
Optical Architecture Enables High-Performance Chips
  • High performance: Provides efficient, practical, and manufacturable optical computing solutions for a variety of platforms
  • Efficient: Permits a new way of designing high-performance computing and decision-making tasks using manufacturable solutions with high-speed processing, despite fabrication imperfections
  • Flexible: Offers photonic chips in a variety of material platforms (i.e., silicon, silicon nitride) and meta-surface arrays implemented in hybrid platforms that combine dielectrics and nonlinear/reconfigurable materials
8437
Hybrid Meta-Surfaces for Active, Non-Volatile Light Manipulation
  • Fast: Enables highly dense pixels with fast (nanosecond) switching capability
  • Scalable: Can be fabricated with features down to nanometer sizes; the overall device can incorporate several meta-surfaces with different features over a large-size wafer
  • Agile: Offers high switching robustness (up to 1012 cycles)
8530
Powered Bilateral Knee Exoskeleton for Rehabilitation of Children and Adults
  • Lightweight: Uses one of the lightest available electromechanical actuators—just 0.5 kg—along with a mere 1.5 kg for the exoskeleton assembly
  • Back-drivable: Lowers the mechanical effort involved in back driving with a single-stage actuator
  • Efficient: Reduces battery consumption compared with existing systems
8369
Multi-Functional Sparse Phased Arrays for Guiding Focused Ultrasound Therapies
  • Robust: Provides sensitivity of detection down to a single microbubble for FUS-induced microbubble activity
  • Precise: Offers broadband B-mode imaging capabilities to improve workflow and efficacy of FUS-based therapies
  • Scalable: Enables the formation of large CMUT arrays and subarrays with appropriate element spacing
8493
Hybrid Zeolitic Imidazolate Frameworks for Effective Gas Separation
  • Tunable: Provides a mechanism for adjusting the porosity and functionality of ZIF materials to be used in a range of applications
  • Advanced: Demonstrates significantly higher levels of separation selectivity from molecular mixtures of interest than previous ZIF models
  • Scalable: Holds potential for large-scale CO2 separation in different materials, such as membranes and adsorbents
5925
Heterogeneous Integration Method for III-Nitride Devices
  • High performance: Enables simple and fast transfer to foreign substrates with an automated pick-and-place technique
  • Compatible: Can be used to transfer devices of any shape and size—from micron to millimeter
  • Efficient: Allows reuse of the growth wafer, lowering production costs
7910
Streamlined Hematology Analysis for Point-of-Care Settings
  • Streamlined: Enables testing in point-of-care settings without complex procedures and specially trained personnel
  • Highly accurate: Offers a spatial resolution higher than current methods due to the shorter wavelength of UV light
  • Cost-effective: Saves on reagents, complex equipment costs, and time-intensive processes without compromising diagnostic quality
8303
Airy-beam Tomographic Microscopy for Biological Imaging
  • Streamlined: Offers a scan-free method of obtaining 3D-resolution images
  • Volumetric imaging: Generates and resolves images of tissues and cells in the 3D space  
  • High resolution and image depth: Provides 3D diffraction-limited resolution 
8381