Available Technologies by Category
An Electronic Microfluidic Platform for On-Chip Apoptosis Quantification using Annexin V-Based PS Externalization Detection-GT NEXT
  • This electronic microchip integrates an electrical sensor network with a microfluidic capture chamber to detect phosphatidylserine (PS) externalization, offering a compact, user-friendly, and cost-effective solution for apoptotic analysis.
  • The prototype provides high sensitivity and specificity without the need for prelabeling, making it suitable for diverse applications in clinical diagnostics and biomedical research.
  • It supports drug discovery, toxicity evaluation, and bioprocessing optimizations, enhancing disease mechanism studies and therapeutic target identification.
9306
Capillary Driven Microneedle Patch for Blood Biomarker Analysis
  • This bioresorbable thermoplastic microneedle platform accurately collects capillary blood and quantifies biomarkers on-chip, supported by a smartphone attachment for easy read-out.
  • The prototype integrates hollow microneedles with microfluidic patterns and crossflow filtration, providing low-cost, reliable, and sensitive point-of-care blood testing.
  • It enables point-of-care personalized diagnostics and blood biomarker analysis in clinical and remote settings without expensive peripheral equipment.
9292
Antigen-specific Cell Programming Using non-viral Approaches
  • This innovative technology uses synthetic nanoparticles to deliver gene modulators and engineered MHC molecules directly to antigen-specific T cells in vivo, enhancing T cell functions and bypassing ex vivo processes.
  • The prototype improves T cell specificity and reduces off-target toxicity, significantly lowering costs and manufacturing time for effective T cell therapies.
  • It has applications in cancer therapy, immune therapy, autoimmune disease therapy, and infectious disease therapy.
8703
Inline manipulation of cells and cell clusters
  • This extracorporeal circulation system enriches CTC clusters from large blood volumes, enabling detailed longitudinal screening and analysis of metastasis.
  • The prototype improves detection rates and facilitates continuous monitoring and in vitro analysis of CTC clusters, aiding early cancer detection and treatment.
  • It supports in-line dialysis systems for pathogenic cells, enhances cancer diagnosis, and provides research tools for studying tumor biology and developing treatments.
9125
Scarless isolation of antigen-specific T cells for CAR T cell manufacturing via DNA-gated sorting
  • This technology introduces DNA-gated sorting (DGS) for label-free isolation of antigen-specific CD8+ T cells, improving CAR T cell therapy.
  • The prototype enhances CAR T cell scalability and therapeutic effectiveness against solid tumors by using a DNA gate mechanism for targeted T cell capture and release.
  • DGS improves in vivo persistence and specificity of CAR T cells, offering better treatment outcomes for solid tumors and other cancers.
9388
Activity-based synthetic liquid biopsy of solid tumors
  • Activatable biosensors injected into tumors capture dynamic biological activity and immune responses, allowing non-invasive monitoring of tumor responses through bodily fluids.
  • The prototype offers real-time insights into tumor behavior and treatment effectiveness, providing a less invasive alternative to traditional biopsies.
  • This method enhances sensitivity and specificity for tumor-specific biomarkers, improving monitoring of drug responses and cancer progression.
9387
Multi-Niche Human Bone Marrow-On-A-Chip for Plasma Cell Survival and Differentiation
  • This novel microfluidic chip simulates the human bone marrow environment, incorporating multiple niches and supporting long-term plasma cell culture and study.
  • The prototype enables comprehensive study of plasma cell maturation, aiding the development of targeted therapies for plasma cell-related disorders.
  • It overcomes limitations in traditional plasma cell culture, facilitating vaccine development, antibody production research, and immune response modulation.
9246
Lymphoid-Lymphatics-Integrated Organ-on-Chip Device and Method
  • This innovative organ-on-chip system combines vascularized lung and lymphoid tissues, aiding studies on airway infections.
  • The prototype supports diverse cell cultures, making it useful for screening treatments and vaccines.
  • It enhances current lung-on-chip models by accurately simulating lung tissue and immune responses.
9349
Driving Neural Activity to Rapidly Control Inflammation, Protein, and Gene Expression in the Brain
  • Novel non-invasive method utilizing neural activity to swiftly control inflammation, protein, and gene expression in the brain.
  • The technology enables rapid and precise modulation of brain functions, potentially revolutionizing treatment for various neurological conditions.
  • Commercial applications include treating Alzheimer's, schizophrenia, autism, epilepsy, and more, offering faster, non-invasive, and targeted therapeutic options.
7773
Acousto-Optical Sensors for MRI Safety Evaluation
  • The invention is an acousto-optical sensor that can measure the SAR (specific absorption rate) in its environment through temperature and the radio frequency (RF) field.
  • The innovation can be used to improve patient safety during MRI scans and to ensure MRI-compatibility for medical implants.
  • The solution is more compact and flexible than market alternatives
7953
Adaptive Medical Image Recognition System with Limited Data Transfer Learning
  • Adaptive medical image recognition system that utilizes transfer learning to overcome limitations caused by minimal amounts of data.
  • Novel innovation transforms generic models into application-specific ones and overcomes the limitations of traditional systems that are often tailored to specific domains or imaging devices.
  • New image recognition system can be used for diagnostics and analysis as well as medical condition monitoring.
8168
Smart Nanosensor-Embedded Stent System for Wireless Surveillance of Restenosis in Coronary Artery Disease
  • An electronic stent that incorporates an ultrathin stretchable wireless sensor for continuous surveillance of restenosis along with neointimal proliferation and plaque deposition.
  • There is no existing system that offers a clinically practical solution for continuous, real- time detection of both restenosis incidence and progression.
  • This device will profoundly decrease the number of healthcare dollars spent on repeated revascularization due to restenosis in CAD.
8542
Systems and Methods for Flexible Sheath Locking with Integrated Shape Sensing
  • This technology aims to become a new steerable device to reduce the invasiveness of traditional methods for delivering drugs and diagnostic devices inside the body.
  • There are no known existing methods of delivering radiotherapy without the potential of adversely affecting healthy cells.
  • This device and method will enable drastic improvements in the quality of life of patients having to undergo radiotherapy treatment. 
9264
Messenger Ribonucleic Acid (mRNA)–Based Opsin Expression Enables New and Safer Optogenetic Studies
  • Opsin expression using messenger RNA (mRNA) provides an alternative to viral vectors for use in optogenetic studies involving neurons as well as drug testing with cardiomyocytes.
  • Expression with mRNAs has lower toxicity and is usually detectable within 2–24 hours rather than 2–3 weeks.
  • The controllable and temporary nature of mRNA offers improved expression regulation based on the transfection amount.
7534
Microfluidic Device Enables Prediction of T-Cell Ability to Home and Engraft to Disease Tissues
  • Improve the homing capabilities of T cells to increase adoptive cell therapy treatment response and safety while decreasing off-target effects.
  • Enhance tumor-infiltrating capabilities with engineered microfluidic devices that identify optimal subsets of cells.
  • Optimize development pipelines by reducing the number of laborious in vivo studies, while also helping cell therapy companies ensure their products reach the desired tissue.
9052
Bi-Channel Needle for Injection
  • The injection fluids are completely separated until the tip of the needle, preventing their mixing until they have reached the syringe’s distal tip. 
  • Since the specific volumes of each drug required will be added to the channels of the syringe, this device reduces the amount of fluid left in the syringe after injection.
  • The needle allows the clinician to inject with syringes that are parallel to each other, as opposed to at some oblique angle.
  • The length of the device is not limited to the current 1-inch syringe. It can be longer (even greater than 1 meter) for catheter-based procedures.
9028
Soft Wireless Sternal Patch for Detecting Systemic Vasoconstriction Using Photoplethysmography
  • A wireless, soft sternal patch includes integrated skin-like, photolithographically patterned electronics specifically tuned to continuously measure vasoconstriction from the sternum.
  • In overnight trials, the device detected sleep apnea and hypopnea with 95% precision and 100% sensitivity compared to data professionally scored by licensed clinicians.
  • Use of this patch on the chest could improve detection of key markers of numerous harmful health conditions.
9170
Bioabsorbable, Permeable, and Flexible 3D Auxetic Implants Offer Large-Volume Soft Tissue Reconstruction
  • A novel 3D auxetic architecture offers enhanced compressive flexibility, permeability, and nonlinear mechanical behavior.  
  • This high-performance technology has the potential to generate implants with soft tissue-mimetic biomechanical properties and high mass transfer capacity.
  • Implants can be customized for patients by adjusting the strut width and intervals and by fitting the complex anatomic geometry of the defect based on patient medical data.  
8821
Synthetically Generated, Realistic, and Controllable Human Bio-Signals from Participant-Free Data Collection
  • Synthetic data generation system replicates human body signals and uses a deep generative model to create synthetic SCG beats without human participants. 
  • Transformer-based generative model synthesizes SCG beats that are physiologically diverse and realistic. 
  • Clinically relevant feature inputs act as controls for aortic opening (AO) and aortic closing (AC) features of the generated SCG beat.
9081
Superluminescent Light Projection (SLP) System Decreases Nanoscale Printing Costs by 10–50 Times
  • This superluminescent light projection (SLP) system decreases overall nanoscale printing costs by 10–50 times. 
  • A parallel writing mechanism supports higher throughput speeds: up to 100 times higher than existing metal printing methods and four times higher than existing polymer printing methods. 
  • SLP creates sharp-edged images with minimal speckling patterns, resulting in high-resolution images and structures on both polymer and metal-based films. 
9066