Available Technologies by Category
Handheld Breath Collection Device for Detecting Disease Biomarkers
  • Improved diagnosis:  Analyzes both the gas and liquid sampled from the patient’s breath for potentially more robust and multifaceted results
  • Enhanced patient experience:  Requires a shorter exhalation cycle to get a breath sample, making the test more comfortable for patients
  • Small and portable:  Optimizes and miniaturizes the collection process for easy point-of-care applications
8791
Increasing Medium-Chain Fatty Acid (MCFA) Yield in Bacterial Host with Engineered Enzyme
  • High performance: Increases the yield of MCFAs during chemical and biopolymer synthesis
  • Enabling:  Improves the microbial production of chemicals that require the expression of heterologous enzymes
  • Adaptable:  Potentially applies to methods of engineering other heterologous enzymes to interact with endogenous proteins in order to produce molecules of interest in a bacterial host
7595
Skin-Conformal Wearable Stress Monitor Delivers Greater Precision and Continuous, Wireless Monitoring with Comfort and Flexibility
  • All-in-one: The personal adhesive bandage-like single device platform offers wireless, multi-data sensing by simply mounting it on the skin.
  • Disposable: This wearable device is fully disposable after the use and the measured data can be simply sent to the cloud via a tablet or smartphone app.
  • Compact: The unique, thin design of this bioelectric device is one-sixth the volume of current market offerings—weighing less than 7 g, including its rechargeable battery.
8414
Adaptive Broadband Impedance Matching in Ultrasound Front-End Electronics
  • High performance: Improves power transfer and acoustic reflectivity
  • Flexible: Enables multimodal and tunable operation of CMUTs
  • Efficient: Provides optimal matching for co-design of CMUT electronics
8342
Miniaturized Modular-Array Fluorescence Microscopy
  • Powerful: Offers high fluorescence sensitivity, efficiency, and spatiotemporal resolution (~3 µm and up to 60 Hz)
  • Configurable: Offers compatibility with conventional cell culture assays and physiological imaging, providing accessibility to upright physiological imaging and integration with biochemical sensors under the cell platform
  • Efficient: Provides effective parallelization of multi-site data acquisition
8580
Advancing Mass Spectrometry with Novel Interface
  • Flexible: Allows for integration with a range of operational modes and analytical workflows for different ESI-MS techniques
  • High performance: Offers enhanced sensitivity and a significantly improved limit of detection
  • Robust and effective: Minimizes charged ion loss and enables sampling of the most analytically “valuable” droplets
4182
All-Electronic Immunophenotyping Device for Point-of-Care Testing
  • Convenient: Provides an all-electronic immunophenotyping process with straightforward equipment and techniques
  • Low cost: Performs sophisticated, multistep analyses in a system that is affordable enough for point-of-care settings
  • Flexible: Allows for the easy immobilization of multiple antibodies in the device—a shortcoming of current systems
8045, 8047
Scalable Microfluidic Device with Multiple Constriction Channels for High-Throughput Mechanophenotyping
  • High throughput: Addresses the low-throughput challenges of other similar technologies by handling a sample volume near that of a Coulter counter
  • Low cost: Eliminates the need for costly equipment, highly trained personnel, and long processing times that come with other measuring processes
  • Scalable: Uses a frequency division scheme so that multiple copies of the system can operate concurrently
8031
Measuring Surface Antigen Expression via Microflow Cytometry
  • Portable: This innovation uses a disposable, handheld device without bulky or costly equipment, which is expected to be especially useful in low-resource settings.
  • Simple: It is designed to achieve results similar to those from a commercial flow cytometer but without requiring initial purification.
  • Recoverable samples: Unlike commercial systems, the analyzed sample can be recovered for further tests at the end of the analysis.
7913, 8048
Facilitating Ultrasound Penetration of the Skull for Diagnosis and Treatment
  • Portable: Designed to enable imaging of the brain via small, mobile ultrasound devices, which may offer greater convenience compared with MRI and CT machines
  • Affordable: May be a lower cost modality compared with leading techniques, such as MRI, CT, or positron emission tomography (PET)
  • Robust: Demonstrates energy transmission through the skull on par with that of an aqueous medium in preliminary testing
8340
Portable Multi-Parameter Cancer Diagnostic Tool
  • Powerful: Simultaneously measures multiple tissue parameters to determine electro-thermo-mechanical properties
  • Disposable: Uses single-use biochip components to eliminate cross-contamination
  • Versatile: Uses a variety of other micromotion-capable actuators and extends to other manufacturing techniques and different length scales
7619
Optical Architecture Enables High-Performance Chips
  • High performance: Provides efficient, practical, and manufacturable optical computing solutions for a variety of platforms
  • Efficient: Permits a new way of designing high-performance computing and decision-making tasks using manufacturable solutions with high-speed processing, despite fabrication imperfections
  • Flexible: Offers photonic chips in a variety of material platforms (i.e., silicon, silicon nitride) and meta-surface arrays implemented in hybrid platforms that combine dielectrics and nonlinear/reconfigurable materials
8437
Hybrid Meta-Surfaces for Active, Non-Volatile Light Manipulation
  • Fast: Enables highly dense pixels with fast (nanosecond) switching capability
  • Scalable: Can be fabricated with features down to nanometer sizes; the overall device can incorporate several meta-surfaces with different features over a large-size wafer
  • Agile: Offers high switching robustness (up to 1012 cycles)
8530
Powered Bilateral Knee Exoskeleton for Rehabilitation of Children and Adults
  • Lightweight: Uses one of the lightest available electromechanical actuators—just 0.5 kg—along with a mere 1.5 kg for the exoskeleton assembly
  • Back-drivable: Lowers the mechanical effort involved in back driving with a single-stage actuator
  • Efficient: Reduces battery consumption compared with existing systems
8369
Multi-Functional Sparse Phased Arrays for Guiding Focused Ultrasound Therapies
  • Robust: Provides sensitivity of detection down to a single microbubble for FUS-induced microbubble activity
  • Precise: Offers broadband B-mode imaging capabilities to improve workflow and efficacy of FUS-based therapies
  • Scalable: Enables the formation of large CMUT arrays and subarrays with appropriate element spacing
8493
Streamlined Hematology Analysis for Point-of-Care Settings
  • Streamlined: Enables testing in point-of-care settings without complex procedures and specially trained personnel
  • Highly accurate: Offers a spatial resolution higher than current methods due to the shorter wavelength of UV light
  • Cost-effective: Saves on reagents, complex equipment costs, and time-intensive processes without compromising diagnostic quality
8303
Airy-beam Tomographic Microscopy for Biological Imaging
  • Streamlined: Offers a scan-free method of obtaining 3D-resolution images
  • Volumetric imaging: Generates and resolves images of tissues and cells in the 3D space  
  • High resolution and image depth: Provides 3D diffraction-limited resolution 
8381
Wireless Neurovascular Monitoring System
  • Minimally invasive: minimal impact on hemodynamics (dynamics of blood flow)
  • Flexible and stretchable: able to conform to complex vessel geometry
  • Longer range: improved wireless detection range
7908
Detecting Change of Dielectric Constant
  • Enables detection of materials based on changes to the effective dielectric constant of a circular resonator
  • Measures the index of refraction to detect the change in optical wavelength that is occurring
  • Able to detect the power of the electromagnetic wave in the circular resonator at resonance condition and/or during build-up stage
2839
New Methods of Fabrication for Biosensor Arrays
  • Low manufacturing and operating cost
  • Compatible with multiple standard electrochemical techniques
  • Can be used with CMOS detection chips with multiple chemical detection and/or actuation channels or sites
4231