Available Technologies by Category
Patterned Implantable Devices for Improved Reconstruction of Tubular Tissue Passageway Defects
  • This innovation improves patterned airway stents for passageways or tubular tissues to potentially enable long-passageway reconstructions. 
  • Extrusion-based 3D bioprinting produces a patterned implantable device with higher mechanical strength without increasing the wall thickness of the device.
  • Incorporating auxetic-patterning creates an implantable splinting device for supporting passageway defects in growing patients, such as infants or children.
8831
Quickly and Easily Generate Designer Photopatterned Hydrogel Matrices for Complex Microfluidic Tissue/Organ-on-a-Chip Devices
  • Offers better spatiotemporal control and customization of hydrogel crosslinking and cell patterning
  • Provides a viable alternative to PEG-MAL for culturing primary B cells ex vivo and studying their response to antigens
  • Reduces timing and compatibility issues and offers designer flexibility compared to natural matrices
8986
Plasma-Activated Catalytic Air Purifier Cleans Enclosed Spaces
  • This plasma-activated catalytic air purifier can be used to clean enclosed spaces, such as aircraft, hospitals, and classrooms, while mitigating hazardous gas-phase byproducts. 
  • The air purifier can be used synergistically with UV diode lasers and UV lamps, providing additional contaminant destruction pathways while lowering the potential for dielectric breakdown and plasma formation.
  • This comprehensive technology is effective for germicide and sterilization activities as well as for hydroxyl-radical production and ozone removal in a wide variety of indoor environments.
8536
Custom-Fit Reusable Respiratory Protective Device (RPD) with Continuous Fit Monitoring Improves Comfort and Protection
  • Vastly improves comfort and protection while bringing peace of mind to wearers through a custom fit and continuous monitoring
  • Reduces pressure injuries caused by extended RPD use through both a customized fit and alerts to the wearer when the RPD should be adjusted or removed
  • Minimizes exposures to workplace hazards by immediately detecting leakage during RPD use and alerting the wearer to adjust the device
8876, 9089, 9090, 9091
Sustained Lymphatic Drug Delivery System Potentially Improves Efficacy and Safety of Immunotherapy and Targeted Therapies
  • This sustained lymphatic drug delivery system guides therapeutics and imaging agents to the injection site, lymphatic vessels, and lymph nodes. 
  • Sustained lymphatic delivery enables lower dosing and fewer administrations to potentially improve therapeutic response while reducing adverse effects and costs.
  • The simplicity of a vaccine-like, sustained drug release injection allows use at less expensive community health centers.
8637
Customized 3D-Printed Bioresorbable Heart Valves
  • Resorbable, patient-specific heart valves offer great flexibility for treating a wider range of conditions and patients than traditionally manufactured heart valves. 
  • Customizable valves potentially decrease complications due to poor fit and the need for reinterventions.
  • Selecting materials for optimal mechanical properties, thermodynamic properties, chemical properties, and surface chemistry and morphology reduces mismatch between device and tissue, potentially improving performance and patient outcomes.
8893
Electric Field Treatment Creates Safe, Effective Antimicrobial Surfaces
  • Creates safe, effective antimicrobial surfaces via bacteria inactivation without the use of chemicals
  • Targets cell membranes or capsid, is less likely to induce antimicrobial resistance, and should be effective for antibiotic-resistant bacteria
  • Requires very short electrical pulses to achieve effective bacteria inactivation, potentially leading to better antifouling performance
9130
Chemically Modified Reduced Graphene Oxides (rGOs) Improve Strength and Qualities of Polymer Composites
  • Chemically modifying rGO creates improved dispersibility and miscibility that can be used in polymer processes as a composite reinforcement or coating material.
  • Easily scalable solution chemistry and purification/filtration makes the process economically feasible, resulting in a commercially viable material for many applications.
  • Melt lamination results in a robust conductive coating that is more durable than comparable polymer-based coatings and enables many electronically active device designs.
8297
Artificial Neural Network (ANN) with Unique Input Design that Significantly Reduces Computational Costs of Complex Engineering Systems
  • Neural network’s novel input can utilize first-order schemes and local patches and allows for discontinuities to be reflected accurately and with greater resolution than existing products.
  • This adaptable ANN can be adopted by commercial and scientific research as a stand-alone solution or in conjunction with existing software. 
  • Lower costs for running complex and repetitive computations can be achieved by implementing this neural network with an input system that processes low-cost numerical solution patches arising from two or more converging solutions.
8963
Novel Nanocarriers Strengthen Therapeutic Delivery, Improves Efficacy
  • Greater therapeutic effectiveness is due to the synergistic work of multiple therapeutic agents (hydrophobic/hydrophilic charged) that can be delivered via this dual-loaded biomaterial.
  • The risk of immunotoxicity to a vaccine is reduced because an adjuvant, which can induce the body’s anti-inflammatory immune response, may be loaded and simultaneously delivered with the vaccine. 
  • The novel nanocarrier has broad market application since it can deliver vaccines, gene therapy, small molecule drugs, and even contrast agents.
8988
Anodically Coloring Molecular Electrochromics (EC) Improve Contrast, Color, and Transitions
  • True black-to-clear transitions with high contrast and color tuning are now possible with anodically coloring electrochromics.
  • Broad absorption supports color mixing and color tunability in the charged state, and color tuning is enabled by manipulating the oscillator strengths of radical cation transitions.  
  • Energy required for practical electrochromic applications is effectively decreased by much lower oxidative potentials, as compared to their corresponding polyamides.
7745
Efficiently Generating Complex Hydrogel Structures for Tissue/Organ-on-a-Chip Models
  • Faster: Reduces preparation time from several hours to minutes
  • Simplified: Generates complex patterns, including perfusable channels, using light-triggered polymerization of synthetic hydrogels and photomasks rather than current equipment-intensive methods that use laser-based patterning or ablation techniques
  • Lowers regulatory burdens: Using synthetic rather than biological matrices simplifies regulatory hurdles, increases reproducibility from batch to batch, and increases tunability of the mechanical and biochemical properties of the matrix
8838, 8839
Wearable Ocular Electronics with Virtual Reality Solution for Effective Home-Based Vision Therapy
  • The first fully portable and wireless ocular electronic system in a VR environment provides an effective, home-based visual therapy program.
  • The integrated wearable system has a data classification algorithm to provide high-fidelity, real-time detection of eye vergence to treat eye disorders.
  • Running a VR system on a smartphone can create “virtual therapies” that can be used anywhere anytime.
7916
Self-Driven, Reusable, Scalable Technique for Harvesting Microalgae with Porous Superabsorbent Polymer
  • Fast: The optimized pore structure of the PSAP beads allows fast and selective absorption of water, greatly reducing standard processing time.
  • Cost effective: Microalgae harvesting with PSAP beads cuts costs, as it does not require any complex instrument and little training is needed to operate the harvesting procedures.
  • Scalable: PSAP beads can be produced in large quantities at a significantly lower cost than conventional harvesting tools.
8849
Buoyant Platform Assembly Improves PCM Thermal Management
  • Enhances solidification: Incorporating highly localized agitation via a stirring whip rod, this technology seeds solidification to improve this often-arduous phase of PCM thermal cycling. 
  • Prevents scale build-up: This technology reduces the instance of sheets of solid PCM forming on the heat sink. The high-frequency, extensible whip rod orbits around the passageway to facilitate nucleation (creating improved solidification), while preventing scale build-up on the interior passageway surfaces. 
  • Customizable: The structural design allows the platform to be tailored to the effective density of the PCM material, enabling it to stay between the liquid and solid phases. 
8835
Lightweight, Versatile Cryogenic Conductors
  • Lithium exhibits lower atomic mass, higher power density, and lower losses under cryogenic conditions
  • Conductors such as lithium become even more power-dense at lower temperatures, exhibiting improved electrical performance 
  • Cladding with copper enables lithium to be drawn using standard wire-drawing techniques and tools
8729
Biodegradable Shape Memory Polymer for 3D-Printed Tissue and Biomedical Devices
  • New synthesis reaction produces novel biomaterials for soft tissue treatment combines shape memory and biodegradability with custom 3D printing for patient-specific, minimally invasive solutions 
  • Customizable to patient needs by varying the formulation and molecular architecture to alter the mechanical properties
  • Improves safety and efficacy by providing a much-needed middle range to existing “too hard/too soft” tissue repair options, while also being biodegradable and bioresorbable
8655
Synthetic Hydrogel for Satellite Cell Delivery in Dystrophic Skeletal Muscle
  • Addresses the critical need for a viable treatment for deterioration of the diaphragm, which is a leading cause of respiratory failure and death in Duchenne Muscular Dystrophy patients
  • Engineered hydrogels comprised of synthetic polymers and peptides are designed to enable successful muscle satellite cell (MuSC) transplantation to the diaphragm or other dystrophic skeletal muscle tissue
  • Shown to support MuSC survival, proliferation, and differentiation, which can enable restoration of dystrophin – a protein absent in DMD and critical to strengthening and repairing muscle fibers
7841
Microrobots for Neurosurgery Applications
  • Minimally invasive: Significantly reduces invasiveness of procedures in comparison to current macroscale, neurosurgical robots 
  • Precise control: Uses 3D position data of the microrobots on the brain surface in a closed-loop system to adjust the magnetic field parameters (i.e., magnitude, frequency, phase, and direct current [DC] offset of each coil) as well as the forces the robots exert to the biopsy tissue
  • Facilitates movement: Employs microfabricated shapes that dictate the microrobot's movements, limits their contact with the brain surface to reduce adhesion, and may also provide a means for the robot to propel itself in fluid
8749
Synthetic Hydrogels for Human Organoid (HO) Generation and Transplantation
  • Synthetic hydrogel exhibits high cytocompatibility and minimal toxicity and inflammation in vivo for improved human organoid viability 
  • Injectable delivery vehicle supports localized HO engraftment in mucosal wounds to potentially enhance wound closure and repair
  • Modular design and delivery via endoscopic techniques enables the translational potential of this delivery platform for regenerative medicine and overcomes limitations associated with the use of commercially available matrices for hPSC-based organoid technologies
7536