Available Technologies by Category
Quickly and Easily Generate Designer Photopatterned Hydrogel Matrices for Complex Microfluidic Tissue/Organ-on-a-Chip Devices
  • Offers better spatiotemporal control and customization of hydrogel crosslinking and cell patterning
  • Provides a viable alternative to PEG-MAL for culturing primary B cells ex vivo and studying their response to antigens
  • Reduces timing and compatibility issues and offers designer flexibility compared to natural matrices
8986
Foot Ankle Orthotic (FAO) Delivers Real-Time Portable, Discreet Haptic Feedback for Patients and Athletes
  • Providing patients with discreet notifications of real-time plantar pressure to improve rehabilitation of foot-ankle injuries between clinical visits can reduce risk of injury strain and minimize long-term damage.
  • Athletes from various sports (e.g., tennis, football, basketball) could prioritize injury prevention during practice and games because of the discreet haptic notifications that bring attention to foot planting techniques via pressure monitoring.
  • The benefits of measuring plantar pressure from the four zones of this device’s insole (heel, toes, medial, and lateral) extend beyond foot-ankle injuries and can be key to diabetic pressure wound prevention as well as knee osteoarthritis therapy.
8944
“Smart” Feedback-Controlled Bioreactor Platform Enables Consistent High-Yield and High-Quality MSC Products
  • Scaled-down feedback-controlled hollow fiber-based bioreactor enables identifying the critical quality attributes and critical process parameters for high-quantity and high-quality hCT-MSCs for ideal cell growth and efficacy 
  • Provides the controls to maintain optimum conditions and improve expansion yield and cell viability
  • System can be adapted and applied to industrial cell therapy manufacturing and can enable high-yield and high-quality products while minimizing variabilities
8887
Manually Powered Laboratory Mixing Device
  • This manually operated laboratory device mixes and separates solution components at performance levels comparable to existing powered vortexes and centrifuges.
  • The device operates with no external power source, providing labs without access to consistent electrical infrastructure a reliable solution to mixing and separating solution components.
  • This multiuse device is compatible with containers and sample tubes of various sizes and solution amounts.
9096
High-Precision, Hands-Free Remote Control of Complex Robotic Systems Via Eye Movements
  • This two-camera eye-tracking system (TCES) integrates a commercial eye tracker with machine-learning technology for continuous real-time classification of gaze and eye directions for robotic arm control. 
  • The system provides highly accurate classification for four directions of eye movement and has achieved 99.99% accuracy in studies.
  • Using simple eye movement, the TCES offers low-cost, high-precision control of external devices/hardware for people with disabilities, surgery robots, warehouse systems, construction tools, and more. 
9184
Paper-Based Multi-Well Depletion Enzyme-Linked Immunosorbent Assay (ELISA) Enables Point-of-Care (POC) Testing
  • Paper-based lateral flow assay automatically performs multi-well ELISA testing for POC titer measurements.
  • Simplifies ELISA testing by eliminating the need for centralized laboratories staffed with trained personnel who perform multiple steps in a specific sequence to execute the assay workflow.
  • Transforms a variety of ELISA-based tests into single-use, disposable dipstick tests to be used at the point of care or at home.
9124
Artificial Neural Network (ANN) with Unique Input Design that Significantly Reduces Computational Costs of Complex Engineering Systems
  • Neural network’s novel input can utilize first-order schemes and local patches and allows for discontinuities to be reflected accurately and with greater resolution than existing products.
  • This adaptable ANN can be adopted by commercial and scientific research as a stand-alone solution or in conjunction with existing software. 
  • Lower costs for running complex and repetitive computations can be achieved by implementing this neural network with an input system that processes low-cost numerical solution patches arising from two or more converging solutions.
8963
Automated Bioreactor Sampling System Can Eliminate Cross-Contamination of Samples
  • Automated bioreactor sampling system maintains sample integrity by changing the syringe between samples
  • In addition to savings related to reduced cross-contamination, automated sampling can further lower costs by reducing hands-on time and speeding sampling.
  • Flexible platform can be used with any type of collected sample.
8886
Electronic Immunoassay Using Enzymatic Metallization on Microparticles
  • Lower cost: Replacing fluorescent markers and readout methods with impedance detection has the potential to significantly decrease the cost of the assay. 
  • Transportable: Impedance measurements in microfluidics can be made transportable, which can potentially enable point-of-care applications, as electronic elements are more durable than optical elements.
  • Practical: Identification of COVID-19 antibodies in COVID-positive serum samples has already been demonstrated.
8813
patcherBotPHARMA Automated Intracellular Pharmacological Electrophysiology Robot
  • Increased efficiency: Autonomous operation ensures accurate placement of components and creates high success rates for experiment completion.
  • Decreased human effort: Performs typical ligand-gated ionotropic receptor experimentation protocols autonomously for up to a tenfold reduction in operator interaction time over the duration of the experiment
  • Higher experiment yield: Rapidly replicates previous datasets, reducing the time to produce an 8-point concentration response curve from weeks of recording to ~13 hours of recording

 

8717
Simulated Synovial Fluid Offers Potential for Effective Treatment of Knee Osteoarthritis
  • Osteoarthritis (OA)-simulated synovial fluid (simSF) provides the opportunity to evaluate how different cell therapies respond to an OA-like environment.
  • By analyzing OA patient-derived synovial fluid (pdSF) and developing potency assays, researchers created a simSF comparable to pdSF that overcomes patient variability. 
  • The simSF allows for the investigation of OA biology with greater reproducibility of predictive outcomes and could advance effective treatment of knee OA. 
8956
Biodegradable Shape Memory Polymer for 3D-Printed Tissue and Biomedical Devices
  • New synthesis reaction produces novel biomaterials for soft tissue treatment combines shape memory and biodegradability with custom 3D printing for patient-specific, minimally invasive solutions 
  • Customizable to patient needs by varying the formulation and molecular architecture to alter the mechanical properties
  • Improves safety and efficacy by providing a much-needed middle range to existing “too hard/too soft” tissue repair options, while also being biodegradable and bioresorbable
8655
Synthetic Hydrogel for Satellite Cell Delivery in Dystrophic Skeletal Muscle
  • Addresses the critical need for a viable treatment for deterioration of the diaphragm, which is a leading cause of respiratory failure and death in Duchenne Muscular Dystrophy patients
  • Engineered hydrogels comprised of synthetic polymers and peptides are designed to enable successful muscle satellite cell (MuSC) transplantation to the diaphragm or other dystrophic skeletal muscle tissue
  • Shown to support MuSC survival, proliferation, and differentiation, which can enable restoration of dystrophin – a protein absent in DMD and critical to strengthening and repairing muscle fibers
7841
Synthetic Hydrogels for Human Organoid (HO) Generation and Transplantation
  • Synthetic hydrogel exhibits high cytocompatibility and minimal toxicity and inflammation in vivo for improved human organoid viability 
  • Injectable delivery vehicle supports localized HO engraftment in mucosal wounds to potentially enhance wound closure and repair
  • Modular design and delivery via endoscopic techniques enables the translational potential of this delivery platform for regenerative medicine and overcomes limitations associated with the use of commercially available matrices for hPSC-based organoid technologies
7536
Quantitative, Multiplexed Electronic Detection of COVID-19 Biomarkers
  • Direct electronic detection: This innovation provides direct detection of biomarkers as a simple electronic readout without the use of any intermediate optics.
  • Multiplexed: The device can simultaneously detect multiple biomarkers (e.g., a four-plex chip to detect IgG and IgM antibodies against spike or nucleocapsid antigens).
  • Portable: A handheld, cellphone-interfaced reader is designed to enable detection and monitoring of diseases in remote areas for sensitive yet inexpensive point-of-care use.
8814
Developing Tumor Immune Microenvironments via Engineered Hydrogel
  • Scalable: Enables increased tumor formation rate without sacrificing the dynamic complexity of an in vivo adaptive immune response
  • Improved consistency: Demonstrates consistent induction of tumor growth, latency, and immune infiltration in early analyses of the technology
  • Cost-effective: Eliminates the repetitive processes of conventional methods and leverages inexpensive hydrogel
8785
Capillary Flow Control in Lateral Flow Assays (LFAs) via Delaminating Timers
  • ASSURED: LFAs readily satisfy the majority of the ASSURED (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free, and deliverable to end-users) criteria reported by the World Health Organization to establish capabilities of POC devices.
  • Agile: The addition of timers to LFAs provides an opportunity to develop more complex multi-step testing, as well as additional benefits such as built-in signal amplification and POC DNA extraction and purification.
  • Automated: The ability to sequentially deliver different reagents into a reaction via programmable timers imprinted on paper makes it possible to automate multi-step assays that otherwise could only be performed in laboratories or with manual intervention.
8462, 8634
Recirculation System for Aerosol Collectors Maximizes Particle Concentration for Improved Pathogen Detection
  • Enhanced detection: Continuously recirculated collection buffer increases the concentration of targeted particles collected and improves detection of pathogens 
  • Increased sampled air volume: Recirculating the buffer enables running the system for longer periods of time and with larger volumes of air to improve pathogen detection in entire buildings
  • Increased control: Users have active control of the volume of fluid introduced during collection via the system’s recharge pump
8903
3D Light-Field Endoscopy for High-Precision Microsurgery
  • Enhanced control and safety: Real time visual navigation enhances guidance and intervention in complex microenvironments, maintaining high spatial resolution while providing quantitative depth information
  • Comfortable: System does not require 3D glasses that can cause physician dizziness or headaches after long periods of use
  • Streamlined: Technique eliminates the need for other imaging procedures such as micro-CT or MRI to quantify the 3D morphology of tissue
8848
Cluster-Wells: Isolating Aggressive Tumor Cell Clusters for Improved Cancer Diagnosis and Treatment
  • High performing: Demonstrates superior abilities to isolate CTCs without clogging the system or dissociating the clusters
  • Low cost: Shows high potential for large-scale production because it uses simple equipment and a straightforward process
  • Versatile: Isolates CTC clusters of any cancer type and uses hardware that can be modified to accommodate various devices
8203