Available Technologies by Category
Integrating Electrical Sensors into Soft-Lithography Microfluidic Devices
  • Sophisticated: Advances the integration of electrical sensors on microfluidic devices with a simple, approachable solution
  • Sensitive: Demonstrates a higher signal sensitivity than electrodes in a typical coplanar arrangement
  • Adaptable: Allows for greater layout flexibility because of its straightforward fabrication process
7769
Microfluidic CODES with Innovative Machine-Learning Analysis
  • Scalable: Set-up allows for the integration of multiple microfluidic devices to increase throughput volume.
  • Versatile: Machine learning analysis can be applied to other microfluidic devices integrated with the same Coulter sensor network.
  • Pragmatic: This innovation improves the capabilities of lab-on-a-chip systems to provide an affordable solution for low-resource settings.
7107, 8032
ScheduleNet: Advancing Multi-Robot Coordination
  • Superior performance: Outperforms approximate human-robot scheduling methods in both schedule optimization and total number of feasible schedules
  • Robust: Can autonomously learn scalable scheduling heuristics on multiple application domains and attains an order-of-magnitude improved computation speed compared with exact methods
  • Novel: Is the first method to leverage graph neural networks involving simple temporal network (STN)-based scheduling problems with spatial constraints
8515, 8517
Utilizing Impedance Spectroscopy for Advanced Characterization of Particles
  • Comprehensive: Simultaneously measures both spatial and dielectric properties of particles
  • Streamlined: Helps resolve signal interference from coincident cells—a challenge of other assessment techniques
  • Precise: Offers complex impedance as a new level of particle feature assessment, integrating it with other measurements such as elasticity and size for more predictive analyses
8049
All-Electronic Immunophenotyping Device for Point-of-Care Testing
  • Convenient: Provides an all-electronic immunophenotyping process with straightforward equipment and techniques
  • Low cost: Performs sophisticated, multistep analyses in a system that is affordable enough for point-of-care settings
  • Flexible: Allows for the easy immobilization of multiple antibodies in the device—a shortcoming of current systems
8045, 8047
Scalable Microfluidic Device with Multiple Constriction Channels for High-Throughput Mechanophenotyping
  • High throughput: Addresses the low-throughput challenges of other similar technologies by handling a sample volume near that of a Coulter counter
  • Low cost: Eliminates the need for costly equipment, highly trained personnel, and long processing times that come with other measuring processes
  • Scalable: Uses a frequency division scheme so that multiple copies of the system can operate concurrently
8031
Measuring Surface Antigen Expression via Microflow Cytometry
  • Portable: This innovation uses a disposable, handheld device without bulky or costly equipment, which is expected to be especially useful in low-resource settings.
  • Simple: It is designed to achieve results similar to those from a commercial flow cytometer but without requiring initial purification.
  • Recoverable samples: Unlike commercial systems, the analyzed sample can be recovered for further tests at the end of the analysis.
7913, 8048
A Sensor That Converts Everyday Objects into Microphones
  • Lower cost: The SATURN microphone’s simpler and less expensive fabrication technique results in lower overall costs.
  • Better performance: The microphone geometry, attachment methods, and size and spacing of holes are optimized to maximize the recovery of sound and generation of power. This results in better performance compared to commercially available microphones of this type, recovering sound up to 5,000 Hz.
  • Versatile: Its thin, flexible, and passive form make it configurable to a large number of applications.
7915
Next-Generation Flow Battery for Large-Scale Energy Storage at One-Tenth the Cost
  • Higher power density: This design has achieved ultra-high power densities of 630 W/Ldevice (charge) and 170 W/Ldevice (discharge), compared to existing flow battery designs that achieve only 500 W/Ldevice (charge) and 90 W/Ldevice (discharge).
  • Ultra-high current density: The design has achieved current densities of >300 mA/cm3 per device.
  • Dramatically lower cost: The elimination of parts reduces fabrication costs by 90%. Cost is ~$330 rather than ~$4,400.
8284, 8571
Electromagnetic (EM) Metastructures
  • Multi-use: Provides structural support in conjunction with static and in situ EM performance
  • Efficient: Reduces size, weight, power, and cost (SWaP-C) parameters 
  • Flexible: Integrates non-standard material systems
8469
Innovative Ion Mobility Spectrometry with Open-Air Assembly
  • Protective: Potentially helps protect the technician against contact with ionic hazards
  • Rapid: Separates ions through fast detection of differences in their mass, charge, and cross-section
  • Convenient: Leverages an open-air arrangement that significantly reduces time for experiment setup and sample preparation
4885
High-Tech Infant Suit for Earlier Detection of Cerebral Palsy
  • Advanced: May allow for earlier detection of motor dysfunctions in order to begin therapeutic interventions as soon as possible
  • Robust: Collects data from three limb segments on the leg for a multifaceted assessment
  • Long-lasting: Uses one power source with regulated voltage in order to prolong the use of the device
7949
Energy Storage for Automotive/Portable Applications
  • Increased storage density — backbone offers high surface area for hydrogen storage
  • Fast and easy — polymer readily folds and unfolds for hydrogen storage and fast release in response to actuation
  • Suitable for packaging — uses compliant polymers as a matrix to assume any form factor
3626
Novel Nanofiltration (NF) Membrane Optimizing Concurrent Nutrient Recovery and Micropollutant Removal
  • Effective: Targets mainstream domestic wastewater to recover a greater volume (>30%) of valuable nutrients than the current industry nutrient recovery technology focused on side streams
  • Safer: Reduces EMPs in the fit-for-purpose water used in agricultural irrigation, minimizing the contaminants charge while permitting a lower rejection rate of valuable nutrients
8626
Novel Electrochemical Method for Extracting Lithium from Seawater
  • Fast: This method shortens the time for lithium extraction from seawater from years to days.
  • Energy-efficient: The STLFP has outstanding electrochemical storage properties and working potential, which can achieve high energy efficiency and obtain great lithium recovery.
  • Eco-friendly: The recovery process requires no additional heating or chemicals.
8355
Privacy-Preserving Remote Biometric Authentication
  • Protective: Designed to eliminate privacy concerns associated with databases of people’s faces
  • Flexible: Supports various biometrics, including face, voice, iris, fingerprint, and gait
  • Remote authentication: Eliminates the need to always possess the enrollment device
7885
‘Intelligent’ Power Amplifier Architecture
  • AI-assisted: Provides the PA self-reconfigurability and robust adaptive operation over environmental changes
  • High performance: Features low latency and fast response capabilities required for many fifth-generation (5G) applications
  • Improved learning efficiency: Incorporates into control algorithms multiple RL frameworks, including CAB, multi-armed bandit, contextual bandit, and actor-critic with experience replay
8377
Contextually Aware, Machine Learning–Based Smart Notification System
  • Increases user efficiency
  • Increases user productivity
  • Reduces user stress
8034
Poroelastic Solutions for Spherical-Tip Indentation
  • Robust: Provides a rigorous theoretical base that takes into account poroelastic coupling and the effects of Poisson’s ratio as well as the compressibility of both fluid and solid phases on force relaxation
  • Intelligent: Can be used with sensors and processors to automatically direct an indentation tool and record pertinent data
  • Flexible: Accommodates both permeable and impermeable indentation tools
7870
SlothBot: Sustainable Solution for Studying Climate Change
  • Wide-ranging: Can switch between two different wire branches and can therefore traverse a whole mesh of wires
  • Sustainable: Utilizes solar energy and runs with a low power consumption, making the robot highly energy efficient
  • Low risk: Employs a fail-safe design that protects the robot from damage in the event of a mechanical failure
8194