Available Technologies by Category
Zeolite Membrane Sieves Fabricated on Low-Cost Alumina Hollow Fiber Substrates
  • High performance: Enables lower-cost, scalable, membrane-based molecular separation
  • Convenient: Can form a standalone complete separation or reduce bottlenecks in conventional separation processes
8080, 8167
A First-of-its-Kind Power Amplifier-Based Network for Efficient Broadband Operations
  • Unmatched: Provides first-of-its-kind broadband performance with 26-41 GHz instantaneous 1 dB power gain bandwidth and 25.8-41.3 GHz instantaneous P1dB output power bandwidth—both of which far out-perform currently available techniques
  • Simplified: Sidesteps the need for any tuning or reconfiguration while still providing best-in-class broadband performance
  • Efficient: Significantly improves power amplifier back-off and average efficiency with two efficiency peaks and deep power back-off (12 dB), and maintains better than 38% power-added efficiency at P1dB
8158, 8159
Flight Control System for Miniature Aerial Robots
  • Lightweight: Features a core electronics board that weighs less than half a gram
  • Flexible: Contains a core electronics board that can be conveniently reprogrammed for expanded functionality
  • Compact: Offers a small form factor with an area of about 2 square centimeters
8591
Drive Belt with Surface Texture to Minimize Vibrations
  • Effective: Demonstrated significant reduction in vibration compared with flat, untextured belt surfaces in preliminary testing 
  • Simple: Provides a straightforward and easy-to-implement solution to a widespread problem 
  • Economical: Offers a far less expensive means of maintaining the operation of machinery compared with replacing worn belts or employing complex tension systems
8307
Improve the Reliability of Quantum Computers by Mitigating Measurements Errors
  • Increased reliability by 2-3x: Some current quantum computers have average measurement error rates ranging from 6%–8%, with worst case rates ranging from 25%–30%. Georgia Tech’s methods improve measurement fidelity by 2–3x.  
  • Improved usability: Implementation of the EDM uses the top-four mappings produced by the underlying mapping policy.
  • Proactive: Using AIM to predict the state that is being measured and the error rate profile of the machine, the predicted state can be proactively mapped to the strongest state using a specifically designed inversion string.
8207, 8208
A Low-Loss Broadband Quadrature Signal Generation Technique for Highly Balanced Signals
  • Superior: Provides lower loss, wider bandwidth, better mismatch reduction, zero power consumption, and more balanced quadrature signals compared with other currently available technologies
  • Validated: Achieves an average IRR of 37.5 dB across 40-76 GHz and 33.5 dB across 40-102 GHz, with each stage of the network enhancing IRR by approximately 8 dB in verification of proof-of-concept image-reject mixers
  • Convenient: Eliminates the need for additional calibration and tuning and has reduced sensitivity to fabrication process variations
7888
Polarization-Based Method for Mitigating Wireless Signal Interference Both During Transmission and Receipt
  • Improves mitigation of co-channel interference: Particularly useful for OFDM-based systems, this method improves mitigation of co-channel interference in the frequency domain. By optimizing the SINR as a function of the frequency component, this method provides improved suppression performance relative to single polarization-filter solutions.
  • Maximizes SINR: A set of frequency-dependent MMSE filter weights can be applied to suppress interference, which maximizes the SINR.
  • Flexible: This method can be applied to OFDM, CDMA systems, and various other communication systems having different modulation formats that may or may not require additional processing.
4087
Heat Dissipation for Microelectronic Systems via Capillary Trap
  • Effective: Dissipates large heat fluxes via 3D heat spreading and evaporative cooling that could approach kW/cm2 and beyond while keeping the surface temperature under 90oC
  • Preventive: Mitigates coolant dry-out at the critical heat flux levels that result in a rapid and large temperature rise and thus cause device burn-out
  • Efficient: Exploits high cooling capabilities associated with phase-change heat transfer through evaporation
6272
Advancing Mass Spectrometry with Novel Interface
  • Flexible: Allows for integration with a range of operational modes and analytical workflows for different ESI-MS techniques
  • High performance: Offers enhanced sensitivity and a significantly improved limit of detection
  • Robust and effective: Minimizes charged ion loss and enables sampling of the most analytically “valuable” droplets
4182
Molecular Flux Measurement Device and Method
  • Efficient: Enables a 3x increase in MBE speed compared with metal organic chemical vapor deposition  
  • Controlled: Provides flux stability and control by enabling in-situ measurement of a signal related to the flux, achieving 0.001% flux stability under optimal conditions
  • Reliable: Enables signal measurement in real time, providing high accuracy and reproducibility
3556
Bio-Inspired Gripper with Shear-Induced Clamping
  • Effective: Assists in lifting/releasing objects when in a shear-activated/disactivated mode
  • Versatile: Works with a wide variety of shapes, sizes, and materials
  • Robust: Does not require high precision in controlling vise jaws, making it easy to implement in an industrial environment
8393
Enabling Multi-Beam, High-Capacity Massive MIMO for 5G Communications and More
  • State-of-the-art: Is the first Rx-array design of its kind, autonomously achieving modulated blocker suppression and desired signal beamforming simultaneously without the need for a digital beamforming aid  
  • Robust: Enables multi-beam high-capacity massive MIMO to address the demands of both commercial and defense applications
  • Scalable: Employs ASFs that achieve 4-element spatial filters with sharpened selectivity that can be extended to larger array sizes of thousands of elements and cancellation of any number of interference signals
8120
Enabling Privacy-Preserving Search Over Fuzzy Databases
  • Privacy-preserving: Improves the security of biometric-based surveillance, identification, or searches for individuals using their biometric data over private databases
  • Timely: Addresses the requirements of recent and emerging privacy protection regulations and policies
  • Practical: Fills a gap in privacy-preserving search technologies, which currently do not accommodate searching of fuzzy data such as biometrics
8506
Zeolitic Nanotubes for Advanced Chemical Catalysis and Separation
  • Streamlined: Allows for faster access into and out of zeolite pores without compromising key characteristics of conventional zeolites
  • Advanced: Supports a single central mesoporous channel even after calcination of the organic structure directing agents
  • Robust: Consists of both micropores and mesopores with the potential to enable a variety of separation and catalytic properties.
8407, 8922
Virtual Sensing Integrated for Predictive Reliability (VIPR)
  • Advanced: Acquires system data via virtual sensing, without the need for physical sensors in all desired locations
  • Cost-reducing: Aims to reduce maintenance and planning costs for solid rocket motors and potentially other vehicle propulsion systems
  • Predictive: Provides useful, repeatable, extensive data sets to predict rocket performance and enable proactive plans for propulsion system maintenance, upgrades, and replacements, potentially reducing downtime and failures
8555
A First-of-its-Kind, Ultra-Low Voltage Single-Element Amplified Backscatter System
  • Streamlined: Uses a single element—one tunnel diode with few passive components—to achieve dual functionality of simultaneous oscillation and reflection-amplification
  • Efficient: Combines the features of conventional RFIDs and tunnel diode-based reflection amplifiers while using an extremely low biasing voltage of only 88 mV, consuming only 20 μW, and offering a reflection gain of 48 dB
  • Long range: Provides the highest observed gain in the literature for a given input power
8375
Integrating Electrical Sensors into Soft-Lithography Microfluidic Devices
  • Sophisticated: Advances the integration of electrical sensors on microfluidic devices with a simple, approachable solution
  • Sensitive: Demonstrates a higher signal sensitivity than electrodes in a typical coplanar arrangement
  • Adaptable: Allows for greater layout flexibility because of its straightforward fabrication process
7769
Microfluidic CODES with Innovative Machine-Learning Analysis
  • Scalable: Set-up allows for the integration of multiple microfluidic devices to increase throughput volume.
  • Versatile: Machine learning analysis can be applied to other microfluidic devices integrated with the same Coulter sensor network.
  • Pragmatic: This innovation improves the capabilities of lab-on-a-chip systems to provide an affordable solution for low-resource settings.
7107, 8032
ScheduleNet: Advancing Multi-Robot Coordination
  • Superior performance: Outperforms approximate human-robot scheduling methods in both schedule optimization and total number of feasible schedules
  • Robust: Can autonomously learn scalable scheduling heuristics on multiple application domains and attains an order-of-magnitude improved computation speed compared with exact methods
  • Novel: Is the first method to leverage graph neural networks involving simple temporal network (STN)-based scheduling problems with spatial constraints
8515, 8517
Utilizing Impedance Spectroscopy for Advanced Characterization of Particles
  • Comprehensive: Simultaneously measures both spatial and dielectric properties of particles
  • Streamlined: Helps resolve signal interference from coincident cells—a challenge of other assessment techniques
  • Precise: Offers complex impedance as a new level of particle feature assessment, integrating it with other measurements such as elasticity and size for more predictive analyses
8049