Available Technologies by Category
High Sensitivity Stable Sensors and Methods for Manufacturing
  • This technology introduces dual-gate sensors, separating sensing and amplifying functions for unparalleled stability and sensitivity.
  • The innovation addresses limitations of single-gate sensors, providing high sensitivity, low-voltage operation, and compatibility with diverse substrates.
  • Applications include wearables, IoT, environmental monitoring, with cost-effective large-scale production.
7789
Derivatives of Naphthalene Diimides for Organic Electronics
  • This technology utilizes derivatives of naphthalene diimides (NDI) to enhance electron charge mobility in organic electronics, resulting in superior performance in devices like OLEDs and OPVs.
  • Key benefits include high thermal, chemical, and photochemical stability of the materials, along with significant improvements in electron affinities and charge-carrier mobility, enabling efficient OFET operation and increased air stability.
  • The derivatives have broad commercial applications in fields such as Organic Field-Effect Transistors (OFETs), flexible electronics, Organic Photovoltaic Cells (OPVs), and Organic Light Emitting Diodes (OLEDs).
6129
Acousto-Optical Sensors for MRI Safety Evaluation
  • The invention is an acousto-optical sensor that can measure the SAR (specific absorption rate) in its environment through temperature and the radio frequency (RF) field.
  • The innovation can be used to improve patient safety during MRI scans and to ensure MRI-compatibility for medical implants.
  • The solution is more compact and flexible than market alternatives
7953
mmWave Reconfigurable and Miniature On-Chip Filter Based on Vanadium Dioxide
  • VO2-based combline electromagnetic filter dynamically modulates millimeter wave 5G/6G passband frequencies above 30 GHz using phase-change properties to adjust transmission line lengths with heat.
  • Compact on-chip technology streamlines control, accommodates complex shapes and multiple bands, and minimizes insertion loss, addressing spatial, acoustic wave filtering, and efficiency challenges in mmWave arrays.
  • Designed for 5G and 6G networks, it enables flexible band switching above 30 GHz, addressing key technical challenges and supporting high-performance telecommunications demands.
     
9470
Nanocomposite Film for Volatile Organic Compound Sensing
  • The invention is a new type of chemoresistor capable of sensing volatile organic compounds (VOCs). 
  • The chemoresistor is comprised of a conductive nanoparticle surrounded by a polymer matrix which allows for the chemoresistor’s
    resistance, sensitivity, and target VOC to be adjusted.
  • The nanocomposite can be placed on electrodes through drop casting, dip coating, and painting, which provides a cheap, simple and sensitive sensor ideal for fieldwork.
8695
Novel Hydrogels for Encapsulation, Vascularization, and Transplantation of Cells
  • This hydrolytically degradable poly(ethylene glycol) (PEG) hydrogel leverages ester linkages combined at various ratios with non-degradable macromers to enable tunable degradation kinetics.
  • Potential applications include controlled release and delivery of drugs or proteins as well as cell encapsulation. It can also be used as a delivery vehicle and adhesive for cells in transplantation settings.
  • These innovative hydrogels allow for rapid hydrolytic cleavage in vivo but remain stable in vitro for weeks at neural pH 7 to support regenerative medicine techniques.
9019
An Improved Lattice-Reduction-Aided K-best Algorithm for Low Complexity and High Performance Communications
  • The invention is a more efficient, less complex version of the LR-aided K-best algorithm as it achieves the same performance as existing algorithms and can perform more computations in less time. 
  • The algorithm can be applied to any device using the next generation of wireless communication including home networks, cellular systems, and wireless networks.
  • The new innovation allows for lower complexity operations, higher system throughput, and a better scalability. 
6193
Composite Hybrid Electrode Material Composed of Alumina, Titania, and Carbon Nanotubes
  • The invention is a new composite electrode material designed for use in supercapacitors. 
  • The innovation is composed of a hybrid composite material with a thin coating of alumina and titania which allows energy storage systems to have increased energy density, power density, and cycle life.
  • The new composite hybrid electrode is fit for use in renewable energy systems, consumer electronics, aerospace and defense, and can provide a more efficient solution.
9247
Recyclable Organic Solar Cells On Substrates Comprising Cellulose Nanocrystals (CNC)
  • The novel invention utilizes cellulose nanocrystals to create efficient organic solar cells with substrates that are renewable and exhibit strong mechanical and optical properties, achieving a high power conversion efficiency.
  • The solution offers an environmentally friendly alternative to traditional silicon-based solar panels by being flexible, low-cost, biodegradable, and easily recyclable at room temperature.
  • The innovation is suitable for commercial uses in low-cost electronics, biodegradable printed electronics, wearables, IoT applications, and sustainable building designs.
6304
Systems and Methods for SmallSat Propellant Positioning
  • The technology provides a way to reliably and efficiently control saturated, or boiling, propellants compared to existing technology.
  • The technology can easily be scaled up and applied to different liquids and architectures.
  • Significantly enhances the reliability and efficiency of current positioning methods.
9165
Taskr: Fast and Easy Mobilization of Spot Tasks in Web-based Enterprise Applications
  • The invention is a new, do-it-yourself mobilization solution that users of any skill level can rely on to mobilize their spot tasks. 
  • Taskr uses remote computing to achieve code-less mobilization, which allows for flexible movable delivery, where users can execute their spot tasks through platforms like Twitter or Email. 
  • The new innovation empowers users to drive mobilization efforts themselves by limiting coding skills needed for development of mobile apps and mobilizes spot tasks to execute them through various mobile modalities such as app, Twitter DM, text, email etc.
7781
An Approach to Human-Robot Collaborative Drilling & Fastening in Aerospace Final Assembly
  • The invention is a new, collaborative, and adaptive robot-based approach to complete drilling and fastening tasks autonomously in an adaptable, unstructured environments using an expert demonstrator and human operator. 
  • The human trains the robot to autonomously complete tasks by defining its environment and demonstrating how to locate, classify, and insert fasteners into a fuselage using a camera and 3D sensor that surveys the area. 
  • While the system starts with no information, it can use online and offline learning techniques to develop a data bank of information to utilize throughout the insertion process.
8805
Inkjet Printed Multi-Layer mm-Wave Antennas and Passive Components
  • New manufacturing inkjet printing process to create massively scalable 2D and 3D antennas and passive components allows for rapid fabrication and low costs.
  • The novel innovation is both flexible and portable, enabling on-demand customization with minimal additional costs.
  • The ink manufacturing process has extensive applications from printed RF capacitators and inductors to smart cities, wearables, and skins.
6332
Adaptive Medical Image Recognition System with Limited Data Transfer Learning
  • Adaptive medical image recognition system that utilizes transfer learning to overcome limitations caused by minimal amounts of data.
  • Novel innovation transforms generic models into application-specific ones and overcomes the limitations of traditional systems that are often tailored to specific domains or imaging devices.
  • New image recognition system can be used for diagnostics and analysis as well as medical condition monitoring.
8168
Derivative-Free Output Feedback Adaptive Control for Vehicles
  • New Derivative-Free Output Feedback Adaptive Control for Vehicles improves adaptive control stabilization and tracking performance while achieving a simpler architectural model.
  • Innovation allows for faster adaptation and can be used for aircrafts, missiles, spacecrafts, industrial process, automotives, and airframes.
  • Novel technology uses generalization of assumptions to reduce modeling error while maintaining robustness and improving performance.
5620
Ultra-Thin Interposer Assemblies for Higher Integrated Circuit Bandwidth
  • New ultra-thin interposer aims to achieve high bandwidth in telecommunication processes by using an ultra-small pitch structure and ultra-high density interconnections.
  • The innovation allows for a great increase in bandwidth as well as a decrease  in complexity and costs in comparison to current solutions.
  • Novel invention provides advantages such as scalability, testability pre and post integration, and thermal flexibility for situations needing thermal isolation and conduction.
5453
Low-Cost, Efficient Intracellular Delivery of Proteins and Nucleic Acids via Hydrophobic Ion Pairing
  • Safe and efficient approach of delivering therapeutics to disease by mixing cargo and charged hydrophobic ions with cells.
  • Applications in therapeutic/drug delivery, protein transduction reagent, and gene transduction reagent.
  • Enables efficacious delivery of a wide range of protein and nucleic acid therapeutics.
9178
Scalable Manufacturing Approach of Graded Polymer Thin Film Has Potential for Widespread Use
  • Combines slot die coating with a custom roll-to-roll imaging system to allow for efficient, rapid, and scalable fabrication of high-quality gradient thin films.
  • An improved manufacturing process over existing techniques because it uses broad material combinations and yields higher quality patterned thin films.
  • Incorporates multiple materials to increase the application of patterned thin films across industries, including microelectronics, energy technologies, and environmental systems.
8994
Improving Quantitative Phase Imaging to Enhance Reliability and Broaden Applications
  • Universal application of an OBM/qOBM optical phase imaging device is made possible by the optimized SNR that identifies configurations with fewer limitations (e.g., conditions, tissue).
  • The simulated SNR can identify non-intuitive geometries for optical phase imaging devices that previously may not have been identified by the arduous experimental optimization process. 
  • Optimized SNR when OBM/qOBM devices take in-vivo and in-situ measurements have been proven reliable across multiple types of tissue.
8936
Magnetohydrodynamic Drive for Gas Production in Microgravity
  • Novel technology using magnetohydrodynamic (MHD) forces for gas production and phase separation in microgravity environments.
  • Unifies gas generation and phase separation stages, eliminating the need for moving parts and enhancing reliability.
  • Versatile applications in space exploration, satellite propulsion, in-space manufacturing, and other areas, offering efficient and dependable gas production solutions.
9037