

# Mitigating Measurement Errors in Quantum Computers by Exploiting State-Dependent Bias

Swamit Tannu and Moinuddin Qureshi

Georgia

CREATING THE NEXT



# **Near-term Quantum Computers will be Noisy!**



#### Can't enable fault-tolerance using quantum error correction→ Noisy Intermediate Scale Quantum (NISQ) Computers

# **Execution Model for NISQ**



### Quantum gates and measurements introduce errors

### **Error on IBMQ14 Quantum Computer**



#### Qubit measurement error $\rightarrow$ dominant error

### **Experiments on IBM Quantum Computer**



# Insight

# Exploit the state-dependent bias to reduce the impact of measurement errors

# OUTLINE

Introduction

- Characterization of Measurement Bias
- Static Invert and Measure (SIM)
- ✤ Adaptive Invert and Measure (AIM)
- Evaluations

# Measurement Bias on IBM Machine (IBMQ-14)

✤ We measure all 10 bit basis states (2<sup>10</sup>) on fourteen qubit machine



Measurement Strength is negatively corelated to Hamming weight of data

# Impact of Bias on Superposition State



#### **Measurement Bias Effects Quantum States with Superposition**

# Figure of Merit: Inference Strength (IST)





IST captures quality of inference. IST > 1 ensures correct answer is strongest

# **IST of Baseline**

| Benchmark | Platform    | Baseline |
|-----------|-------------|----------|
| BV-4A     |             | 1.22     |
| BV-4B     | IBMQX2      | 0.9      |
| QAOA-4A   | (5 Qubits)  | 0.73     |
| QAOA-4B   |             | 0.72     |
| BV-4A     |             | 0.46     |
| BV-4B     | IBMQX4      | 4.8      |
| QAOA-4A   | (5 Qubits)  | 0.82     |
| QAOA-4B   |             | 0.72     |
| BV-6      | IBMQ-       | 0.70     |
| BV-7      | Melbourne   | 0.62     |
| QAOA-6    | (14 Qubits) | 0.23     |
| QAOA-7    |             | 0.18     |

IST captures quality of inference. IST > 1 ensures correct answer is strongest

#### Goal: Improve NISQ reliability by exploiting measurement bias

# OUTLINE

- Introduction
- Bias Characterization
- Static Invert and Measure (SIM)
- Adaptive Invert and Measure (AIM)
- Evaluations

### **To Invert or Not to Invert?**



# Static Invert and Measure (SIM)



Create two copies of program: one with inverted measurement and other with standard measurement

### **Impact of SIM on Measurement Bias**



For monotonically decreasing measurement fidelity with Hamming weight, Invert and Measure reduces gap between worst case and average error rate

# **Generalization of Static Invert and Measure**<sup>16</sup>



Using partial inversions, transform any input state to any other state

# **IST of Baseline and SIM**

| Benchmark | Platform    | Baseline | SIM    |
|-----------|-------------|----------|--------|
| BV-4A     |             | 1.22     | 1.12   |
| BV-4B     | IBMQX2      | 0.9      | 1.25   |
| QAOA-4A   |             | 0.73     | 0.86   |
| QAOA-4B   | -           | 0.72     | 0.96   |
| BV-4A     |             | 0.46     | 2.85   |
| BV-4B     | IBMQX4      | 4.8      | 6.4    |
| QAOA-4A   |             | 0.82     | 1.94   |
| QAOA-4B   |             | 0.72     | 2.67 🗸 |
| BV-6      |             | 0.70     | 0.93   |
| BV-7      | IBMQ-       | 0.62     | 0.84   |
| QAOA-6    | (14 Qubits) | 0.23     | 0.72   |
| QAOA-7    |             | 0.18     | 0.36   |

IST captures quality of inference. IST > 1 ensures correct answer is strongest

#### SIM operates at average-case. Can we do better?

# OUTLINE

- Introduction
- Bias Characterization
- Static Invert and Measure (SIM)
- Adaptive Invert and Measure (AIM)
- Evaluations

### **Presence of Arbitrary Measurement Bias**

- We measure all basis states on IBM's five qubit machine ibmqx4
- ✤ For five qubit machine we have 2<sup>5</sup> (32) basis states (00000 to 11111)



#### Measurement Bias may not be predictable

# Adaptive Invert and Measure (AIM): Design



# Measurement bias can be learned, and we use it to find inversions that will ensure strong to weak transformation

# **Evaluations: Improvement in Inference Strength**

| Benchmark | Platform                      | Baseline | SIM    | AIM    |
|-----------|-------------------------------|----------|--------|--------|
| BV-4A     | IBMQX4<br>(5 Qubits)          | 1.22     | 1.12   | 1.32 🗸 |
| BV-4B     |                               | 0.9      | 1.25 🗸 | 1.83   |
| QAOA-4A   |                               | 0.73     | 0.86   | 1.27 🗸 |
| QAOA-4B   |                               | 0.72     | 0.96   | 1.12   |
| BV-4A     | IBMQX4<br>(5 Qubits)          | 0.46     | 2.85   | 10.38  |
| BV-4B     |                               | 4.8      | 6.4    | 5.7    |
| QAOA-4A   |                               | 0.82     | 1.94   | 2.03   |
| QAOA-4B   |                               | 0.72     | 2.67 🗸 | 1.98 🗸 |
| BV-6      | IBMQ-Melbourne<br>(14 Qubits) | 0.70     | 0.93   | 1.02 🗸 |
| BV-7      |                               | 0.62     | 0.84   | 1.09 🗸 |
| QAOA-6    |                               | 0.23     | 0.72   | 0.86   |
| QAOA-7    |                               | 0.18     | 0.36   | 0.78   |

Inference Strength (IST) captures quality of inference. IST > 1 ensures correct answer is most likely

# Impact of Bias on Bernstein Vazirani (BV) Algorithm



Adaptive Invert and Measure mitigate the measurement bias such that all basis states have better than average measurement fidelity

# OUTLINE

- Introduction
- Bias Characterization
- Static Invert and Measure (SIM)
- Adaptive Invert and Measure (AIM)
- Evaluations
- Conclusion

# Summary

- Measurement is a dominant source of errors on NISQ
- Measurement errors have state dependent bias
- We mitigate the measurement bias using Static Invert and Measure (SIM) and Adaptive Invert and Measure (AIM)
- SIM and AIM improves the reliability by up to 2x and 3x on IBMQ and significantly improve the ability to do correct inference.

# Thank you

### **IBM 20 Qubit Machine** → **Measurement Bias**



Source: "Experimentally Characterizing IBM Quantum Processors" Megan Lily and Travis Humble (Oak Ridge), at QRE2019

## Google's 53 Qubit Machine → Measurement Bias



Source: "Quantum supremacy using a programmable superconducting processor"

### **Invert and Measure on IBMQ**





**Invert and Measure** 

# Impact of Bias on Bernstein Vazirani (BV) Algorithm

#### Run BV algorithm with all five bit keys on "ibmqx4" machine



#### Bias can make some answers more vulnerable than others