

Background

- surface

offer the lowest possible power consumption while То significantly improving the performance of silicon photonics in terms of high responsivity without saturation limit is critical but challenging.

Methodology

1.Fabrication processes

AlO_x: Atomic layer deposition with a thickness of ~15 nm. ZnO: Hydrothermal growth & annealed. PMMA: Spin Coated, and

etched by reactive ion etching. ITO: Physical vapor deposition RF.

References

- Materials, 2017, 29, 1701412.

Dramatically Enhanced Broadband Photodetection by Dual Inversion Layers and Fowler-Nordheim Tunneling

1 School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA 2 Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100038, China

1. Zou, Haiyang, et al. Piezo-phototronic effect on selective electron or hole transport through depletion region of vis-NIR broadband photodiode, Advanced

2. Zou, Haiyang, et al. "Dramatically Enhanced Broadband Photodetection by Dual Inversion Layers and Fowler-Nordheim Tunneling." ACS nano (2019).

Haiyang Zou¹, Xiaogan Li¹, Guozhang Dai¹, Zhong Lin Wang^{1,2}

Acknowledgement

The research was supported by U.S. DOE, BES (Award DE-FG02-07ER46394), and NSF (DMR-1505319).

