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1. INTRODUCTION

A detailed understanding of wetting characteristics of liquids
on plain or structured solid surfaces and their effect on phase
change are required for many applications. In order to analyze
wetting and interphase transport, it is essential to identify all
relevant factors affecting contact line dynamics. Capillarity alone
has been extensively studied for interpreting the wetting phe-
nomenon. Its relation to the chemical constitution of both solid
and liquid was used to explain the extent of spreading and the
equilibrium contact angle during partial wetting.1 However, as
the length scale decreases below 1 μm, long-range interactions
such as van der Waals forces can also play an important role, in
addition to surface tension, to define the interface shape and, in
turn, the rates of mass and heat transfer due to phase change at
the interface. The three forces due to dipole induction, molecular
orientation, and dispersion, which contribute toward the long-
range interaction between two molecules, are collectively known
as the van der Waals force. Among the constituent forces, disper-
sion is always present between molecules and is generally domi-
nant, as compared to the dipole-dependent induction (Debye
interactions) and orientation forces (Keesom interactions).2

An aspect of van der Waals force which is less prominently
addressed in the existing literature for analysis of interfacial
transport is the retardation effect. The dispersion interactions
between surfaces decay rapidly at longer separations due to
attenuation of electromagnetic coupling. For very short and long
distances, a well-known asymptotic relation for disjoining pres-
sure is given byΠd =�A0/6πδ

3 andΠd =�B/δ4, respectively,
where A0 is the nonretarded Hamaker’s constant and B is the

retarded dispersion constant,3 which is applicable beyond the
crossover length. This length is roughly related to the character-
istic ultraviolet radiation absorption wavelength of the medium
and is generally on the order of 800 Å.1 While dispersion inter-
actions are most significant in determining the disjoining pres-
sure in the case of nonpolar liquids, electrostatic interaction be-
tween molecules cannot be neglected when a polar solvent is
utilized. The presence of both dispersion and electrostatic inter-
action between two interacting mediums is addressed by the
DLVO (Derjaguin�Landau�Verwey�Overbeek) theory.4,5

While DLVO can quantitatively describe electrostatic contri-
bution toward surface forces in thin liquid films, it is now under-
stood that additional interactions can exist which are “non-DLVO”
in nature. From experimental observations, prior studies have
estimated the effect of structural interactions in thin liquid films
due to the forces other than van der Waals and DLVO inter-
actions.6�9 The structural component of disjoining pressure
arises when interphase boundary layers, whose structure is dif-
ferent from that of the bulk liquid, overlap. Supported by experi-
mental measurements, the structural component of disjoining
pressure was found to decay exponentially with distance.8 How-
ever, with dissolved ions in water, these additional forces still
fail to explain the behavior of many colloidal systems. The con-
cept of short-range hydration forces was then introduced to
relate theory to experiments based on interaction of mica surface
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combined effect of electrostatic interaction and van der Waals forces is
taken into account. The equations governing fluid flow and heat
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which enhances saturation pressure, or a decrease in the ambient vapor pressure result in enhancing the net potential for evaporation
and increasing the curvature of the interface.
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with electrolyte solutions,10 but this concept has been met with
some skepticism,11 and is still amidst validation. Yet, there are
more recent concepts based on additional interaction modes,
such as image charge forces, steric interactions, and hydrophobic
forces with an aim to fully explain experimental observations.

Given the uncertainty in establishing and estimating the uni-
versally applicable force interactions, a comprehensive investiga-
tion of interfacial transport in water films is not only challenging,
but currently incomplete. Therefore, our aim in this work is to
carry out a simplified analysis to identify the prominence of
different interactions for sustaining flow, mass and energy trans-
port in evaporating liquid film confined within a nanoscale capil-
lary and to gain amechanistic understanding of the process physics.
Evaporation of simple, nonpolar wetting liquids has been reported
to elucidate effects arising due to van der Waals interactions, in
addition to capillarity. In this regard, it is noteworthy to acknowl-
edge the contribution of Wayner and co-workers in both theore-
tical developments and experimental validation.12�14 Additionally,
experimental studies15�18 and computational analysis19,20 of ther-
mocapillary convection and velocity slip in channels during phase-
change20 are of relevance to the problem analyzed in this work.

In the analysis of phase-change of fluids in confined spaces, the
rate of evaporation at the free surface needs to be modified from
the commonly used expression given by Schrage.21 That is, the
change in equilibrium vapor pressure over a capillarymeniscus, as
compared to a “flat” interface, has to be accounted for using the
Kelvin equation,22 modified to include the effect of an adsorbed
liquid film and presence of disjoining pressure.23�25 Using
interferometry, it has been shown that the predictions from the
modified Kelvin equation match well with experimental mea-
surements for capillary radii as small as several nanometers.24

Interfacial transport of nonpolar liquids is now well under-
stood for evaporation in simple geometries like microchannels
and cylindrical tubes.12,13,15,16,19,20,26,27 However, the underlying
solid�liquid�vapor interactions in previous studies were limited
to dispersion and capillarity; the effect of electrostatic interac-
tions, which are of much longer range, becomes important in the
case of nanoconfined liquids and is analyzed in the current study.

2. ANALYSIS OF FLOW AND HEAT TRANSFER

The following mathematical model of fluid flow and heat
transfer describes the interfacial transport of an evaporating

meniscus inside a cylindrical pore. The cylindrical pore is as-
sumed to be open-ended and exposed to atmospheric condition,
which is a commonly encountered arrangement in practical applica-
tions of membrane-based phase-change processes. As a result, the
interface is assumed to be surrounded by a gas phase comprising an
air�vapor mixture at atmospheric pressure. The formulation pre-
sented herein includes the effects of capillary and disjoining pres-
sures and also compares their importance relative to thermocapillary
stresses (Marangoni effect) at different operating conditions.

At steady state, the shape of an evaporating interface inside a
channel or pore is often broadly divided into three regions, as
shown in Figure 1: (1) a thin adsorbed film in equilibrium with
gaseous phase forms the leading edge of the liquid�vapor inter-
face; (2) an adjacent thin-film region, which is significantly influ-
enced by the disjoining pressure; and (3) the meniscus region
where capillary pressure is a dominant force. Beyond the men-
iscus region, the flow can be considered fully developed, laminar,
and well described by the Hagen�Poiseuille equation. In this
analysis, the origin of the cylindrical coordinate system is located
at the junction of the evaporating thin-film region and the
adsorbed film, as shown in Figure 1. Numerical integration of
governing equations is carried out with respect to the axial co-
ordinate, x, to compute other flow variables for x e 0. The
position of the interface is denoted by ri(x).

The model assumes a steady, axisymmetric, incompressible
flow. Furthermore, the hydrostatic pressure and radial pressure
gradient is neglected as compared to the dominant capillary,
disjoining pressure, and axial pressure gradients. With these
assumptions, the axial component of momentum balance for
liquid flow is given by

� dpli
dx

þ μl
r

∂

∂r
r
∂ul
∂r

� �
¼ 0 ð1Þ

The boundary conditions for fluid flow are the no-slip at the
walls, u = 0 at r = rc, and thermocapillary stress balance at the
interface,� μl(∂u)/(∂r) = (∂σ)/(∂x) at r = ri.

27 The solution to the
differential eq 1with these boundary conditions is therefore given by

ul ¼ � 1
4μl

dpli
dx

� �
rc
2 � r2 þ 2ri

2 ln
r
rc

� �
� ri
μl

∂σ

∂x
ln

r
rc
ð2Þ

Figure 1. (a) Classification of the extended meniscus during evaporation. (b) Schematic for evaluation of normal interfacial velocity and illustration of
various boundary heat fluxes.
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The mass flow rate at any axial position can be obtained by
integration,

R
Flu1(2πr) dr between r = ri and r = rc to yield

_m ¼ πFl
8μl

�dpli
dx

� �
ðrc2 � ri

2Þðrc2 � 3ri
2Þ � 4ri

4 ln
ri
rc

� �

þ πFl
8μl

dσ
dT

� �
dTli

dx

� �
4riðrc2 � ri

2Þ þ 8ri
3 ln

ri
rc

� �
ð3Þ

The change in mass flow rate of the liquid along the axial
position due to evaporation at the interface can be calculated in
terms of the local mass flux. At any interfacial location, the mass
flux is given by evaporation kinetics21

_m00 ¼ 2σ̂
2� σ̂

M
2πR

� �1=2 pvi
Tli

1=2
� pv
Tv

1=2

� �
ð4Þ

where pvi is the equilibrium vapor pressure, and pv is the partial
pressure of the vapor in the gas phase, which is a mixture of air
and vapor at temperature Tv surrounding the interface. In order
to relate mass flux to the velocity of liquid phase, the mass
continuity equation, ∂ul/∂x + (1/r)∂(rvl)/∂r = 0 is integrated
between r = ri and r = rc.

rivli ¼ d
dx

Z rc

ri

rul dr þ riuli
dri
dx

ð5Þ

Equation 5 assumes that vl = 0 at r = rc. Also, since the interface
position ri is a function of the axial variable, the Leibniz integral
rule is used to obtain the expression at the right-hand side of eq 5.
This equation is transformed in terms of mass flow rate to obtain

vli ¼ 1
2πFlri

d _m
dx

þ uli
dri
dx

ð6Þ

The interfacial velocity of liquid directed normal to the
interface wli = _m00/Fl can be evaluated in terms of the velocity
components and the slope of the interface θ = tan �1(dri/dx) as
illustrated in the Figure 1b and is given by the following equation:

wli ¼ uli sin θ� vli cos θ ð7Þ
Using eqs 6 and 7, the mass flow rate at any axial location can

be related to the rate of evaporation at the interface given by eq 4.
The temperature discontinuity at the interface (Tli � Tv) using
kinetic theory is given by �0.45(Tv/2R)

1/2uv,
28 where uv repre-

sents the characteristic vapor speed during evaporation. By
utilizing _m00/Fv as an appropriate scale for uv, the temperature
jump is∼5 �C for a conservatively large approximation for _m00 of
∼5 kg/m2s. In this case, the assumption of thermal equilibrium
would then introduce an error less than ∼5% even for a high
humidity (95% or pv/pvi = 0.95) ambient environment. There-
fore, to simplify the analysis, the discontinuity in temperature at
the interface between the liquid and gas phase is neglected by
assuming local thermal equilibrium or Tv = Tli.

27

�cos θ
2πri

d _m
dx

¼ 2σ̂
2� σ̂

M
2πRTli

� �1=2

pvi � pv
� � ð8Þ

Equation 3 relates mass flow rate to two unknown variables,
namely, the pressure and temperature gradients. The pressure
distribution in the liquid phase can be obtained using balance of
normal stress at the interface, while the interfacial temperature
distribution is obtained using energy conservation.

Although the pressure in liquid phase varies along the inter-
face, the total pressure of the gas phase consisting of air and

evaporated vapor mixture can be assumed constant and equal to
atmospheric pressure patm. This assumption is based on the
evaluation of Knudsen number, Kn =M/(

√
8πd2FvNArc)for the

transport of vapor molecules inside the cylindrical pore, which is
estimated to be close to 10 for a pore radius of 25 nm. Since the
corresponding flow regime is Knudsen diffusion, the pressure
drop in the gaseous phase is neglected. With this assumption, the
balance of normal stress across the interface is given in terms of
capillary and disjoining pressures by

patm � pli ¼ 2σk þ Πd ð9Þ
where the local mean curvature of the interface29 and the
disjoining pressure30,31 are given by the following equations:

k ¼ 1
2

1

ri 1 þ ðdri=dxÞ2
h i1=2 þ d2ri=dx2

1 þ ðdri=dxÞ2
h i3=2

8>><
>>:

9>>=
>>;
ð10Þ

Πd ¼ �A

6πðrc � riÞ3
þ εεo

2ðrc � riÞ2
πkBTli

Ze

� �2

ð11Þ

It is assumed that the value of surface tension remains close to
bulk value even in the thin film region. Additionally, the retarda-
tion of dispersion force is neglected in this analysis, and the van
der Waals component of disjoining pressure is evaluated using
the nonretarded Hamaker’s constant. The Hamaker’s constant
for two macroscopic phases 1 and 2 interacting across a medium
3 is calculated using the following equation2

A ¼ 3
4
kBTli

ε1 � ε3
ε1 þ ε3

� �
ε2 � ε3
ε2 þ ε3

� �

þ 3hνe
8

ffiffiffi
2

p ðn21 � n23Þðn22 � n23Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ n23

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 þ n23

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ n23

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 þ n23

p	 

ð12Þ

where ε and n represent the dielectric constant and the refractive
index of the interacting substances, respectively; kB and h denote
the Boltzmann’s and Planck’s constants, respectively; and νe
denotes the absorption frequency, which is assumed to be 2.9�
1015 s�1.32 According to eq 12, the Hamaker’s constant varies
slightly from�3.261� 10�20 to�3.148� 10�20 J correspond-
ing to a temperature variation of 25 to 90 �C. In this analysis, a
constant value of �3.148 � 10�20J is assumed for the non-
retarded Hamaker’s constant.

The electrostatic interactions arise due to charging of the pore
wall when it is submerged in an electrolyte, due to either a
chemical reaction inducing charge dissociation or due to adsorp-
tion of charged species from the electrolyte. For instance, surface
carboxylic groups could dissociate by losing protons to the
electrolyte to become negatively charged. On the other hand,
calcium ions from electrolyte could get adsorbed onto previously
uncharged surfaces of lipid bilayers to result in a positively
charged surface. In both cases, the total charge on the pore wall
is balanced by an equal number of counter charges in the
electrolyte. The disjoining pressure arising due to these electro-
static interactions is calculated using Langmuir’s equation for
thin films of dilute electrolyte on surfaces of high intrinsic electric
potential. Langmuir’s equation has been utilized to determine the
electrostatic interactions between water and quartz surfaces. It is
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to be noted that Langmuir’s equation offers simplicity and
allows obtaining a critical insight to study the importance of
electrostatic interaction. An alternative and more accurate
analysis for a broader range of ionic strengths of electrolytes
can be carried out by solving for charge and potential distribu-
tion in polar solvents. The electrostatic disjoining pressure can
then be obtained from these distributions. Finally, the evalua-
tion of disjoining pressure using eq 11 neglects the struc-
tural component due to lack of a well established and accep-
ted relation to calculate structural forces as a function of film
thickness.

The governing equation to determine the interfacial tem-
perature gradient is derived from energy conservation applied
to a differential volume as shown in Figure 1b. In this case, the
net heat transferred to the control volume by conduction and
advection causes evaporation of liquid at the interface. In order
to simplify the energy conservation, the relative magnitudes of
conduction and advection are assessed. The ratio of heat
transferred by axial conduction ( _qc∼ klAΔT/rc) and advection
( _qa ∼ _mCplΔT) is estimated using the flow rate obtained from
the dissipated heat flux from a single pore and the latent heat of
evaporation, _m ∼ _q00A/hfg. For a cylindrical pore of radius
25 nm and a reference heat flux of 1000 W/cm2, the ratio of
heat conduction to advection, _qc/ _qa ∼ klhfg/( _q00Cplrc), is in
excess of 1000. We choose the heat flux of ∼1000 W/cm2 in
this work because this analysis has been motivated by applica-
tion of evaporative cooling for thermal management of high
performance electronic devices, which operate under high
power dissipation loads. The analysis, however, is general
enough and is applicable to other (lower and higher) heat
fluxes supporting evaporation phase change within a nanopore.
In this regard, the specific value of the heat flux is used only as a
scaling parameter in the analysis. It will later be shown in the
discussion of results that the heat flux used here for estimating
the ratio is justified, and therefore, this approach is applicable
even to pores of radius 500 nm. By neglecting advective heat
transfer, the integral form of energy conservation is given by
_qc,r � _qc,x + _qc,x+Δx = _qe. The net heat conducted along the
axial direction, _qc,x + Δx� _qc,x= (Δx)∂ _qc,x/∂x is evaluated using
the following equation, where Leibniz integral rule is again
utilized.

∂ _qc, x
∂x

¼ ∂

∂x

Z rc

ri

�klð2πrÞ∂Tl

∂x
dr

¼ ð�2πklÞ
Z rc

ri

r
∂
2Tl

∂x2
dr þ ð2πklriÞ ∂Tl

∂x

� �
i

dri
dx

ð13Þ

A further simplification introduced in this analysis is a linear
temperature variation in the radial direction. This approximation
has been used previously for study of interfacial transport in
microscopic pores and channels,27 and should be equally applic-
able to nanoscale pores.

Tl � Tw

Tli � Tw
¼ r� rc

ri � rc
ð14Þ

where Tli and Tw denote the temperature of the interface and the
capillary wall, respectively. The governing equation for interfacial
temperature distribution is obtained by using the linear tempera-
ture profile and the overall energy conservation. The derivation

of this equation is included in the Supporting Information.

ð2πklrcÞTw � Tli

rc � ri
þ 2πkl

3
Tw � Tlið Þ dri

dx

� �2

� 2πkl
3

ðrc � riÞdridx
dTli

dx
þ πkl

3
ðrc þ 2riÞðTw � TliÞd

2ri
dx2

� πkl
3
ðrc þ 2riÞðrc � riÞd

2Tli

dx2
¼ � hf g

d _m
dx

ð15Þ
Governing eqs 3, 8, 9, and 15 are used to determine the shape

of the interface, flow rate, pressure, and temperature distribution.
These equations are nondimensionalized using the following
scaling parameters. The axial and radial coordinates are scaled
with capillary radius, rc as x = x/rc and r = ri/rc, while pressure,
flow rate, and temperature are scaled as p = pli/pv, _m= _m/ _mo and
Ti = 2πrckl(Tli � Tw)/ _mohfg, respectively. The mass flow rate,
_mo, used for scaling other dependent variables is given by the
following equation, where pv,eq(Tw) denotes the saturation
pressure at temperature Tw.

m_ o ¼ 2σ̂
2� σ̂

M
2πRTw

� �1=2

pv, eqðTwÞ � pv
� �

2πrc
2

� � ð16Þ

The nondimensional form of governing equations is summar-
ized below, where Πi denote the nondimensional parameters
resulting from scaling flow variables. It is to be noted that, in
deriving the nondimensional form of mass flux from evaporation
kinetics (eq 8), the Clausius�Clapeyron relation (dP/dT =
Fvhfg/T) has been used to determine the equilibrium vapor
pressure as a function of temperature. A brief derivation of this
equation is provided in the Supporting Information.

_m ¼ π

8
Π1 �dp̅li

dx̅

� �
1� r̅i

2
� �

1� 3r̅i
2

� �� 4r̅i
4 ln r̅i

� �

þ 1
16
Π2

dT̅i

dx̅

� �
4r̅i 1� r̅i

2
� � þ 8r̅i

3 ln r̅i
� � ð17Þ

1 þ 1
2π

Π3Π4T̅

� �
1 þ 1

2π
Π4T̅

� ��1=2

¼ �1

r̅i 1 þ dr̅i=dx̅ð Þ2
h i1=2 d _mdx̅ ð18Þ

Π5 � p̅li ¼ Π6
1

r̅i 1 þ dr̅i=dx̅ð Þ2
h i1=2 þ d2 r̅i=dx̅2

1 þ dr̅i=dx̅ð Þ2
h i3=2

8>><
>>:

9>>=
>>;

þ Π7

6πð1� r̅iÞ3
þ Π8

1 þ Π4T̅=2π
1� r̅i

� �2

ð19Þ

�T̅i

1� r̅i
� T̅i

3
dr̅i
dx̅

� �2

� ð1� r̅iÞ
3

dr̅i
dx̅

dT̅i

dx̅
� T̅i

6
ð1 þ 2r̅iÞd

2r̅i
dx̅2

� ð1 þ 2r̅iÞð1� r̅iÞ
6

d2T̅i

dx̅2
¼ � d _m

dx̅
ð20Þ
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The nondimensional parameters are defined as

Π1 ¼ Flrc
3pv

μl _mo
Π2 ¼ Flrchf g

μlkl

dσ
dT

� �

Π3¼
FvðTwÞhf g

pv, eqðTwÞ � pv
Π4 ¼ _mohf g

rcklTw
Π5 ¼ patm

pv

Π6 ¼ σ

rcpv
Π7 ¼ �A

rc3pv
Π8 ¼ εεo

2pv

πkTw

Zerc

� �2

The ratio of nondimensional parameters, Π2/Π1, compares
the pressure gradient arising from thermocapillary effect to the
total pressure gradient driving the flow in the meniscus. Π4

represents a ratio of radial temperature drop across the extended
meniscus to the wall temperature. The characteristic value ofΠ4

is typically small (∼10�3 to 10�2) for evaporation inside nano-
pores or channels.Π6,Π7, andΠ8 compare pressures arising due
to capillary, van der Waals, and electrostatic interactions.

Equations 17�20 are numerically integrated using the Runge�
Kutta method to obtain the location of the interface, pressure,
and mass flow rate as a function of the axial variable. Due to the
singularity dri/dxf ∞ as ri f 0, numerical convergence could
not be achieved in the vicinity of ri = 0. In order to obtain the
solution at ri = 0, the governing equations were transformed from
x to ri dependence to facilitate integration with respect to ri. By
adopting this procedure, convergence was easily achieved since
dx/dri f 0 as ri f 0. The transformed governing equations can
also be found in the Supporting Information.

The boundary conditions at x = 0 required to integrate
eqs 17�20 are ri = ro, dri/dx = 0, _m= 0, p = Π5 � Π6/ro �
Π7/(1 � ro)

3 � Π8/(1 � ro)
2, T = 0, and dT/dx = 0 where ro

denotes the equilibrium radius, which is related to thickness of
the adsorbed film as ro = 1� to. The following section describes
the procedure used to calculate the adsorbed film thickness.

3. EQUILIBRIUM THICKNESS OF AN ADSORBED FILM

The thickness of the adsorbed film on a pore or channel wall is
determined by various factors that define equilibrium between
the condensed and gas phases. Kelvin’s relation was based on
equilibrium between a capillary held liquid and its vapor phase. In
the case of capillary rise, the equation takes the form pv,eq� pvi =
σkFv/(Fl � Fv) where pv,eq and pvi represent the vapor pressure
in equilibrium with the liquid for a plane and curved interface,

respectively.22 A modification to Kelvin’s equation proposed by
Cohen incorporates gas adsorption on the walls of cylindrical
pores. The resulting isothermal jump in equilibrium vapor
pressure of a pure liquid�vapor system at temperature T due
to the presence of an adsorbed film of thickness t in a pore of
radius rc is given by the following equation.33

ðFlRT=MÞ ln pvi=pv, eq
� � ¼ � σ=ðrc � tÞ ð21Þ

Using eq 21, the change in the equilibrium vapor pressure due
to a curved meniscus, with an effective capillary radius (rc� t) of
25 nm, at a temperature T ∼ 90 �C is estimated to be less than
2%. Therefore, in this analysis the equilibrium vapor pressure pvi
is calculated from saturation properties of water as a function of
temperature.

A thermodynamic treatment of phase change in the cylindrical
pore was later presented by de Boer,34 elucidating the hysteresis
observed during capillary condensation and evaporation of
simple dielectric fluids. The derivation of equilibrium film thick-
ness presented herein is an extension of de Boer’s study by incor-
porating the formulation of disjoining pressure by Derjaguin30

and including electrostatic interactions in polar liquids as given
by Langmuir.30,31

The thickness of an adsorbed layer in a liquid�vapor system
confined inside a pore or channel is governed by the equilibrium
established between the condensing (gas) and evaporating
(liquid) phases. At a fixed pressure and temperature, the change
in free energy of this thermodynamic system when dN moles of
gas condense is given by dGp,T = ∑((∂G)/(∂N))p,TdN. The
factors affecting the free energy of the system during capillary
condensation or evaporation are the chemical potential of
interacting phases, the surface tension and the disjoining pres-
sure. These are mathematically expressed as μ̂ = (∂G/∂N)p,T, σ =
(∂G/∂S)p,T, andΠd = (�1/S)(∂G/∂t)p,T, where S represents the
surface area of the interface, t corresponds to the film thickness,
and Πd represents the disjoining pressure experienced by the
condensed phase in contact with the pore. These factors affecting
the net change in free energy are incorporated in the analysis as
shown below:

dGp, T ¼ ∂G
∂N

� �
p, T

þ ∂G
∂S

� �
p, T

dS
dN

þ ∂G
∂t

� �
p, T

dt
dN

ð22Þ

Figure 2. The adsorbed film thickness corresponding to ∂G/∂N = 0 and (a) ∂2G/∂N2 > 0, (b) ∂2G/∂N2 < 0, calculated at different vapor pressures for
rc = 30 nm and Tw = 90 �C.
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Using equations relating variables N, S, and t, which are
dS/dN =�Vm/(r� t) and dt/dN = Vm/A where Vm represents
the molar volume of the condensed phase, the transformed eq 23
illustrates how both capillary and disjoining pressure can affect
the free energy of the system during a phase-change process.

∂G
∂Np, T

¼ μ̂c � μ̂g �
σ

ðrc � tÞVm �ΠdVm ð23Þ

where the difference in the chemical potential (μ̂c� μ̂g) in eq 23
can be represented in terms of pressure and temperature, RT
ln(pv,eq/pv) for an ideal solution, where pv,eq is the saturation
pressure at temperatureT and pv is the partial pressure of vapor in
the air�vapor mixture surrounding the interface.

In order to establish equilibrium, the free energy should attain
a minimum, which requires two conditions to be satisfied,
namely, (∂G/∂N)p,T = 0 and (∂2G/∂N2)p,T > 0. Hence, the
equilibrium film thickness is determined from the following two
relations:

ðFlRT=MÞ lnðpv, eq=pvÞ � σ

ðrc � teÞ �Πd ¼ 0 ð24Þ

� σ

ðrc � teÞ2
� dΠd

dt
g 0 ð25Þ

In deriving relation 25, the relation dt/dN > 0 has been used,
which implies a growth in the film as vapor molecules are
transferred from gas phase to the condensed layer. The values
of film thickness for water at 90 �C confined inside a capillary of
radius 30 nm and satisfying eq 24 for different values of relative
pressure pv/pv,eq are shown in Figure 2a,b. Evidently, there are
multiple solutions of eq 24 as illustrated by circled data points in
Figure 2a,b, but only those values satisfying inequality 25 can
establish a stable equilibrium. These values are marked in
Figure 2a, which correspond to the conditions ∂G/∂N = 0, as
well as ∂2G/∂N2 > 0.

The equilibrium thickness of the adsorbed film is a function of
three parameters, namely, the temperature, the vapor-pressure
ratio, and the capillary radius. The adsorbed thickness as a
function of capillary radius and vapor-pressure ratio is shown
for water at a temperature of 90 �C in Figure 3a. The partial
pressure of vapor, pv, in the gas phase surrounding the interface is
governed by the rate of vapor transport away from interface. In
other words, the ambient is relatively dry when vapor removal

from the near interface zone via diffusion and/or advection is
efficient, and it is humid when gas phase mass transfer is poor and
the process is mass transport limited. An increase in the vapor
pressure of the ambient causes a decrease in the net driving
potential for evaporation, resulting in a thicker adsorbed film in
equilibrium with vapor. On the other hand, a decrease in the
capillary radius also results in thicker adsorbed film for a given
vapor pressure ratio. As the effective capillary radius decreases,
the molecules at the free surface are more closely held by the
neighboring surface molecules resulting in thicker equilibrium
films. A constant decrease in capillary radii can potentially drive
the system closer to equilibrium if the ambient is sufficiently
saturated. This phenomenon is indeed observed during capillary
condensation and evaporation and explains the hysteresis ob-
served in the isotherms during adsorption and desorption.34 It is
to be noted that a fixed value of surface tension for water is
assumed in this analysis to determine the equilibrium film thick-
ness. Due to the interaction between ultrathin liquid film and the
substrate, the thickness dependence of the surface tension is
obtained by the integration of the corrected van der Waals pres-
sure equation.35 The deviation in the value of surface tension for
very thin liquid films (∼1 nm) from its bulk value, at a fixed
temperature, was found to be within 3%. Therefore, while the
temperature dependence of surface tension is included to ac-
count for the thermocapillary effect, the thickness effect is neg-
lected due to its relatively minor contribution. The formulation
presented in this study to calculate the equilibrium film thickness
differs from that initially proposed by Wayner et al.12

te ¼ �AVmTv

6πMhfgðTli � TvÞ

" #1=3

ð26Þ

which was later adopted in many subsequent studies. The deri-
vation of eq 26, applicable only to nonpolar solvents, is based
entirely on evaporation kinetics and bears no information on the
free energy of the liquid�vapor system. It is also evident that this
formulation cannot be utilized in systems where the condensed
phase is in thermal equilibrium with its gas phase, while it is
indeed possible for an unsaturated vapor phase to be in thermal
equilibrium with its liquid phase, by establishing a nonevaporat-
ing adsorbed layer. The interfacial temperature jump, (Tli� Tv),
and vapor temperature, Tv, required for computing the adsorbed
film thickness in eq 26 are commonly postulated as a priori

Figure 3. (a) The adsorbed film thickness calculated at Tw = 90 �C for different capillary radii and vapor pressures used in the model described in this
work. (b) Adsorbed film thickness calculated using eq 26, which neglects electrostatic interactions.
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known parameters; however, for a self-consistent comparison of
our approach (based on local thermal equilibrium between
phases) to that of Wayner et al.,12 the temperature jump and
vapor temperature are scaled by _mohfg/(2πrckl) and Tw, respec-
tively, to calculate equilibrium film thickness, with evaporation
rate _mo given by eq 16. Figure 3b shows variation of adsorbed film
thickness calculated using eq 26 for different capillary radii and
vapor pressures, using (Tli � Tv) and Tv, estimated as outlined
above. Comparing results in Figure 3a and b shows that an in-
crease in the adsorbed film thickness with capillary radius and
relative vapor pressure is observed in both cases, with difference
in magnitude within a factor of 2. This mismatch is due to inclu-
sion of electrostatic interactions as well as the procedure used for
estimating the temperature jump in terms of the evaporation rate.

4. RESULTS AND DISCUSSION

The governing equations are solved to obtain the shape of the
interface, mass flow rate, pressure, and temperature distribution
inside the capillary. The importance of including electrostatic
disjoining pressure is discussed. The effects of thermocapillary
stresses are also presented for different operating conditions. The
three operational parameters identified to be critical in the
resulting flow characteristics are the radius of the capillary,
rc, the wall temperature, Tw, and the relative vapor-pressure,
pv/pv,eq. The interface shown in all simulations is assumed to be
pinned at x = 0, which also marks the boundary of adsorbed film
in equilibrium with the ambient vapor phase. The temperature
dependent properties of water used for all calculations are listed
in the Supporting Information. In order to build intuitive under-
standing of the problem in hand, we describe the results in terms
of physical (dimensional) parameters. A brief discussion of the
results in termsof the relevant nondimensional groups is also included
where necessary to support the generality of our conclusions.
4.1. Capillary and Disjoining Pressures. The relative effects

of capillary and disjoining pressures on the shape of the interface
are compared in Figure 4, corresponding to rc = 30 nm, Tw =
90 �C, and pv/pv,eq = 0.98. During evaporation, the interface
acquires a distinct shape to balance the viscous stresses and
pressure forces. The total interface area of the meniscus inside
a capillary tube is smallest when only capillary pressure is

considered, while it is largest when capillary and disjoining pres-
sures are both included in the analysis. Away from the pore-wall,
where capillary forces are significantly larger than disjoining pres-
sure, the meniscus is highly curved, resulting in higher gradient in
capillary pressure to balance the viscous pressure drop inside the
liquid. On the other hand, the interface is less curved and the
change in slope is more gradual when disjoining pressure is signi-
ficant in addition to capillary pressure near the pore wall. The
presence of electrostatic interaction in addition to van der Waals
forces enhances the disjoining pressure, causing a further reduc-
tion in the gradient in the curvature required to balance the
viscous stress.
The relative magnitudes of various forces acting on the inter-

face are shown in Figure 5 in terms of relative pressure along the
axial position. The nondimensional variables corresponding to
rc = 30 nm, Tw = 90 �C, and pv/pv,eq = 0.98 are of the following
orders of magnitude:Π6 = 3� 101,Π7 = 9� 10�4, andΠ8 = 6�
10�2, which indicate the relative strengths of capillary, van der
Waals, and electrostatic interactions, respectively. It is clear that
capillary pressure is a dominant force in nanopores compared to
disjoining pressure. The magnitudes of van der Waals and
electrostatic interactions are comparable to capillary pressure
only at close proximities of ri > 0.96 and ri > 0.95 to the wall,
respectively. Interestingly, the equilibrium radius of the adsorbed
film for these conditions is ro = 0.9373. This suggests that the
capillary pressure is significant in a large portion of the extended
meniscus; also, since even the adsorbed film inside a cylindrical
pore has a nonzero curvature, the capillary forces are significant
along the entire length of the meniscus in small pores (∼30 nm).
While the absolute pressure of the liquid phase is mainly

determined by the capillary pressure, the disjoining pressure
demonstrates a much larger gradient in the thin film region
(x f 0). Since it is the total pressure gradient that drives fluid
flow, the contribution of electrostatic interaction is significant as
shown in Figure 5, and is even greater than that due to capillary
forces. Also, the capillary forces and disjoining (electrostatic
together with van der Waals) pressure forces act in opposite
directions, as reflected in different sign of pressure gradients.
While it is the pressure gradient (not an absolute value of

pressure), which determines fluid flow in the extended meniscus
inside the capillary, it is useful and relevant to the current analysis
to describe the state of liquids confined in very small capillaries.

Figure 4. Effect of capillary and disjoining pressure on the shape of the
interface is illustrated. The extension of meniscus due to electrostatic
interaction is also shown. The interface is shown for the simulation
conditions of rc = 30 nm, Tw = 90 �C, and pv/pv,eq = 0.98.

Figure 5. Axial variation of normalized capillary and disjoining pres-
sures (electrostatic and van der Waals components) along a meniscus
interface inside a cylindrical pore (rc = 30 nm, Tw = 90 �C, and pv/pv,eq =
0.98).
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It is known that liquids in tension can sustain extremely large
negative pressures. In particular, it has been reported that water
in hydrophilic nanochannels can exist under large negative pres-
sures while being metastable.36,37 The derivation of an equilib-
rium film thickness shown previously in this study is in accor-
dance with the general stability criteria for metastable liquids. We
adopt a phenomenological approach38 to determine the equilib-
rium conditions for metastable liquids and fluid mixtures. Addi-
tionally, the laws of hydrodynamics governing liquid flow are still
applicable in this case, since the approximation of a continuum
phase is not violated.
4.2. Thermocapillary Stresses in Cylindrical Pores. In order

to determine the effect of Marangoni stress on interfacial
transport, the shape of the interface is calculated for two distinct
operating conditions. At Tw = 90 �C and pv/pv,eq = 0.98, the
interfaces corresponding to capillary radii of 50 and 500 nm are
shown in Figure 6. For both radii, sinceΠ1/Π2 > 40, the ratio of
viscous to thermocapillary stress is large, which indicates that
Marangoni stresses are comparatively less significant in nanoca-
pillaries. The shape outlined by open circles is for viscous-shear-
only transport, and is qualitatively compared with the solid
curves when Marangoni stresses are included. It is clear that
the inclusion of thermocapillary stresses in the analysis results in
a negligible change in the interface shape for both 50 and 500 nm
pores. This is expected, since Marangoni stresses are prominent
only in much larger capillaries with large temperature gradient
along the interface. In this analysis, with water as the evaporating
liquid, the temperature gradient is not substantial to affect the
flow behavior even in 500 nm capillaries.
4.3. Effect of Capillary Radius. The interface corresponding

to different capillary radii at a constant wall temperature and
vapor pressure of Tw = 90 �C and pv/pv,eq = 0.98, respectively, is
shown in Figure 7 in terms of nondimensional radial and axial
coordinates. As evident from eq 19, the nondimensional para-
meters that control the interfacial shape and transport during
evaporation are Π6, Π7, and Π8, which compare the relative
importance of capillary, van der Waals, and electrostatic interac-
tions, respectively. Relative magnitude of these nondimensional
numbers for different capillary radii is indicative of the resulting
interfacial shape.

In the case of a capillary pore of radius 500 nm, the non-
dimensional numbers Π6 ≈ 2, Π7 ≈ 2 � 10�7, and Π8 ≈ 2 �
10�4 differ substantially from those for a capillary pore of radius
50 nm, for whichΠ6 ≈ 2 � 10,Π7 ≈ 2 � 10�4, andΠ8 ≈ 2�
10�2. While these values clearly indicate that capillary effect plays
a key role in both cases, it is also evident that the relative
importance of van der Waals and electrostatic interactions are
greater in smaller pores, which results in a further extension of the
meniscus, as demonstrated in Figure 7.
The shape of interface during evaporation also depends on the

pressure gradient driving the flow. For instance, the axial varia-
tion of capillary and disjoining pressures is shown in Figure 8 for
cylindrical pores of radii 50 and 500 nm. The total pressure gra-
dient is due to both capillary and disjoining pressures, as shown
in Figure 8. In the case of narrow pores, while capillary pressure is
greater in magnitude, the disjoining pressure is significant over a
larger portion of the interface. This observation is supported by
the relative magnitudes of nondimensional parameters Π6,Π7,
and Π8. Also, Figure 8 demonstrates a substantial gradient in
both capillary and disjoining pressures over amuch larger portion
of the interface for smaller pores. Consequently, fluid flow can be

Figure 6. Effect of thermocapillary (Marangoni) stresses for water
confined in nanocapillaries. The shape of interface in capillaries of
different radii, as predicted with (solid lines) and without (circles)
Marangoni stresses included in the analysis. The interfaces are shown for
Tw = 90 �C and pv/pv,eq = 0.98.

Figure 7. Interface shape corresponding to Tw = 90 �C, pv/pv,eq = 0.98,
and rc = 50 to 500 nm. The inset compares the average evaporating mass
flux (kg/m2s) at different capillary radii (nm).

Figure 8. Comparison of capillary and disjoining pressures along the
meniscus in capillaries at Tw = 90 �C, pv/pv,eq = 0.98, and pore radii of
rc = 50 nm and 500 nm, respectively.
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sustained over relatively long and significantly thinner film
regions in smaller capillaries. It is the absence of a significant
pressure gradient in large capillaries that results in amuch smaller
meniscus length relative to the capillary radius. Consequently, it
can be established from Figure 7, which shows interfacial shape in
nondimensional units, that the total length of the interface does
not increase proportionally with the capillary radius.
The ability of smaller pores to sustain fluid flow through

relatively longer, thin film regions results in a larger rate of evapo-
ration per unit pore cross-sectional area. This is shown in Figure 7
as an inset comparing average evaporation mass flux for different
pore radii. It is noteworthy to mention that, if the ambient
gas phase can be maintained sufficiently dry to remove external
mass transfer limitations, then large heat fluxes can be sustained
through evaporation. For the mass fluxes given in the inset of
Figure 7, the net evaporation corresponds to heat fluxes ( _m00hfg)
in excess of 1000 W/cm2.
4.4. Effect of Wall Temperature and Vapor Pressure.

Figure 9 compares the shape of the interface corresponding to

different wall temperatures. The total length of the interface is
smaller at higher temperatures, but yields larger average evapora-
tion rate in a pore, as shown in the inset in Figure 9. Since the
temperature jump across the interface between the liquid and gas
phases is neglected in this analysis, a higher evaporation rate for a
fixed pore radius is mainly a result of higher equilibrium vapor
pressure at higher temperatures. As a result, a larger gradient in
the curvature of interface is expected in order to support a higher
flow rate in the thin film region. The total length of the interface
is therefore much smaller for evaporation at higher temperatures.
Figure 10 compares the shape of interface resulting from varying
the vapor pressure of the ambient atmosphere surrounding the
evaporating meniscus for a fixed wall temperature and capillary
radius. The average mass flux per unit pore footprint area (πrc

2) is
directly proportional to the difference of pressure at the interface,
(pvi � pv), as shown in eq 8. Therefore, analogous to the effect
temperature, the length of the interface shrinks for smaller vapor
pressure ratios,pv/pv,eq, due to higher flow rate in the thin film region.

5. SUMMARY AND CONCLUSION

Analysis of interfacial transport is carried out for water
evaporating in the confines of a cylindrical nanopore. The
governing equations for fluid flow and heat transfer are derived
in the limit of continuum transport. In addition to capillarity and
dispersion forces, the analysis incorporates the electrostatic
interaction in a solid�liquid�vapor system using the Langmuir
equation and demonstrates its effect on the interfacial character-
istics. A thermodynamic approach to the calculation of equilib-
rium film thickness is presented, which differs from the con-
ventional formulation12 that relies only on evaporation kinetics.
The governing, nonlinear differential equations are solved nu-
merically to determine the axial variation of flow variables and the
shape of the interface under various operating conditions.

At a constant wall temperature, the equilibrium thickness of
adsorbed film is found to increase with the relative vapor
pressure, pv/pv,eq, while it decreases with increase in pore radius,
rc. An increase in the vapor pressure of the ambient environment
causes a reduction in the external driving potential for evapora-
tion, resulting in a thicker adsorbed film in equilibrium with its
vapor phase. On the other hand, as the capillary radius decreases,
the molecules at the free surface are more strongly held by
the neighboring surface molecules resulting in thicker equili-
brium films.

This study also demonstrates a significant change in the shape
of the interface when electrostatic interactions are included, in
addition to van der Waals and capillary forces. In particular, the
interface is found to extend further due to electrostatic forces.
Therefore, the net rate of evaporation is promoted due to an
increase in the total free surface area, as well as owing to an
enlarged thin film region in the meniscus.

The inclusion of thermocapillary stress does not yield measur-
able variation in interfacial characteristics for nanoscale capil-
laries, due to insufficient temperature gradient to induce stresses
comparable to other driving forces.

The analysis identifies three important parameters that sig-
nificantly affect the overall performance of the system, namely,
the capillary radius, wall temperature, and the degree of satura-
tion of vapor phase. In smaller capillaries, the viscous pressure
drop is supported by a significant gradient in both disjoining and
capillary pressures over a large fraction of the meniscus. In larger
capillaries, the pressure gradient is significant only at the leading

Figure 9. Interface corresponding to pv/pv,eq = 0.98, rc = 50 nm, and
varying porewall temperatures,Tw=50, 70, and 90 �C.The inset compares
the average mass flux (kg/m2s) at different wall temperatures (�C).

Figure 10. Interface corresponding to rc = 50 nm, Tw = 90 �C, and
varying the relative pressure in the ambient environment surrounding
the meniscus pv/pv,eq = 0.98, 0.96, and 0.94. The inset compares the
average mass flux (kg/m2s) at different vapor pressures.
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edge of the entire meniscus, where the contribution of the
disjoining pressure is important. As a result, the extension of
meniscus is prominent for smaller nanoscale capillaries, in turn,
yielding a greater net rate of evaporation per unit pore area.

The effects of temperature and ambient vapor pressure on net
rate of evaporation are shown to be analogous. An increase in wall
temperature, which enhances saturation pressure, or a decrease
in the ambient vapor pressure, both result in an overall increase in
the net potential for evaporation from the interface. Also, since a
higher rate of evaporation requires a larger pressure gradient
inside the meniscus, the length of the meniscus shrinks for higher
evaporation fluxes to accommodate higher gradients.

The results of this analysis are important not only from a
fundamental prospective, but also for advancing numerous
applications, from water distillation39�42 to thermal manage-
ment of high power sources,43,44 which take advantage of highly
efficient phase change in nanoporous systems.
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’NOMENCLATURE
A - Hamaker’s Constant (J)
d - Diameter of water molecule (m)
e - Elementary charge (C)
G - Gibbs free energy (J)
h - Planck’s constant (6.626 068 � 10�34 m2 kg/s)
hfg - Enthalpy of vaporization (J/kgK)
kB - Boltzmann constant (1.380 650 3 � 10�23 m2 kg s�2 K�1)
kl - Thermal conductivity of the liquid (W/mK)
Kn - Knudsen number for vapor diffusion in a nanocapillary
M - Molecular weight (kg/kmol)
N - Number of moles of evaporating/condensing molecules

(mole)
NA - Avogadro’s constant
_mo

00, _mo - Mass flux and mass flow rate at reference conditions,
respectively (kg/m2 s, kg/s)

n - Refractive index of a medium
patm - Atmospheric pressure (Pa)
pl, pv - Pressure of liquid and partial pressure of vapor phase,

respectively (Pa)
pvi, pv,eq - Equilibrium vapor pressure of curved and flat interface,

respectively (Pa)
_qa, _qc - Rate of heat advection and conduction, respectively (W)

R - Universal gas constant (J/kmolK)
r - Radial coordinate (m)
rc - Radius of the capillary or pore (m)
ri - Radial position of the interface (m)
te - Equilibrium thickness of the adsorbed film (m)
Tl, Tv - Temperature of the liquid and gas phase, respectively (K)
ul, vl - Axial and radial components of the liquid velocity inside the

meniscus, respectively (m/s)
Vm - Molar volume of the evaporating liquid (m3/kmol)
wli - Velocity of the liquid phase normal to the interface (m/s)
x - Axial coordinate (m)
Z - Charge of a dissociated ion

’GREEK SYMBOLS
ε - Dielectric constant
εo - Permittivity of free space
k - Curvature of the meniscus (m�1)
μl - Absolute viscosity of the liquid (kg/ms)
μ̂ - Chemical potential (J/kmol)
νe - Absorption frequency (s�1)
Πd - Disjoining pressure (Pa)
Fl, Fv - Density of liquid and vapor phase, respectively (kg/m3)
σ - Surface tension of liquid (N/m)
σ̂ - Accommodation coefficient
θ - Slope of the interface at any axial location
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