

Technologies Available for LICENSING

OFFICE OF TECHNOLOGY LICENSING

https://licensing.research.gatech.edu | techlicensing@gtrc.gatech.edu

Rubber Encapsulated Pressure Sensor for Contact Sensing

A contact force sensor based on a custom elastomer dome with a tailored air cavity adhered to a barometric pressure sensor

Georgia Tech inventors have developed a contact force sensor based on a custom elastomer dome with a tailored air cavity adhered to a barometric pressure sensor. In particular, the shape of the rubber enclosure surrounding the pressure sensor is controlled in order to achieve a desired force vs. pressure signal for the sensor. An air bubble is engineered between the rubber encapsulating the pressure sensor chip (and board) which changes shape and ultimately collapses as the force is applied to the sensor. The shape and collapse of that bubble, along with the entire structure of the rubber encapsulating the pressure sensor, govern the force vs. pressure behavior of the sensor. Similarly, the structure of the encapsulation allows the sensors to withstand inertial effects. As a result, they are suitable for any contact sensing in which the object is also undergoing dynamic movements.

Summary Bullets

- Controllable design for tunable force response
- Force and pressure sensor characteristics can be easily tailored
- Protected pressure sensor from high forces and pressures

Solution Advantages

- Controllable design for tunable force response
- Force and pressure sensor characteristics can be easily tailored
- Protected pressure sensor from high forces and pressures
- Suited for contact sensing where the object undergoes dynamic movement

Potential Commercial Applications

- Robust Contact Sensing
- Articulated robotic appendages

Background and More Information

Ground contact and force detection sensors are of critical technical importance in the realization of all manners of robots capable of locomotion and interaction with the environment. Requirements for field deployed sensors include ease of manufacture, durability, and consistency over time. Current force and contact sensors are cost prohibitive, unreliable, require training throughout time, are susceptible to inertial loads, or the sensing range is unsuitable for the application.

Inventors

- Dr. Claudio Di Leo
 - Assistant Professor and Director of the Multiphysics Mechanics of Materials Lab (M3Lab) Georgia Tech School of Aerospace Engineering
- Dr. Julian Rimoli
 - Goizueta Junior Professor Georgia Tech School of Aerospace Engineering
- Mark Costello
 - Professor Georgia Tech School of Aerospace Engineering, and School of Mechanical Engineering
- Benjamin Leon
 Graduate Research Assistant at CAMM Georgia Tech School of Aerospace Engineering

IP Status

:

Publications

, -

Images

Visit the Technology here:

Rubber Encapsulated Pressure Sensor for Contact Sensing

https://s3.sandbox.research.gatech.edu//print/pdf/node/3683