

Technologies Available for LICENSING

OFFICE OF TECHNOLOGY LICENSING

https://licensing.research.gatech.edu | techlicensing@gtrc.gatech.edu

Fluorescence Microscopy with an Ideal sCMOS Camera

A software to correct sCMOS-related noise

Inventors at Georgia Tech have developed a software for the Automatic Correction for sCMOS-related Noise (ACsN). This combines an accurate estimation of noise variation with sparse filtering to eliminate the most relevant noise sources in the images of a sCMOS sensor, approaching the performance of an ideal camera. This near-ideal conditions result in a drastic reduction of pixel-dependent noise in sCMOS images and an enhanced stability of denoising performance at a competitive computational speed. This software is also compatible with low-cost CMOS cameras.

Summary Bullets

- Fast produces fully quantitative sCMOS image restoration up to 100 times faster than the current stateof-the-art
- Accurate produces fully quantitative sCMOS image restoration up to two orders of magnitude more accurate than the current state-of-the-art
- Improved features allows a broad range of imaging techniques without compromising data reliability

Solution Advantages

- Fast produces fully quantitative sCMOS image restoration up to 100 times faster than the current stateof-the-art
- Accurate produces fully quantitative sCMOS image restoration up to two orders of magnitude more accurate than the current state-of-the-art
- Improved features allows a broad range of imaging techniques without compromising data reliability

Potential Commercial Applications

Improving CMOS cameras- cell biology imaging

Background and More Information

Cell biology has an ever increasing demand for sharper, faster and gentler imaging techniques. For this reason, scientific Complementary Metal-oxide Semiconductor (sCMOS) cameras have been usually preferred to

Electron Multiplying Charge-Coupled Devices (EMCCD), because they provide higher frame rates, wider field-of-view and substantially lower electrical noise. However, sCMOS have higher readout noise and extra fixed pattern noise sources compared to EMCCDs, which limits their performance especially in low-light conditions necessary to ensure that imaging has a minimal impact on the observed biological processes.

Inventors

- Dr. Shu Jia
 Assistant Professor Georgia Tech School of Biomedical Engineering
- Dr. Biagio Mandracchia
 Postdoctoral Fellow Georgia Tech School of Biomedical Engineering

IP Status

The following patent application has published<0:p></o:p>: US20220198611A1

Publications

<u>Fast and accurate sCMOS noise correction for fluorescence microscopy</u>, Nature Communications - January 3, 2020

Images

Visit the Technology here:

Fluorescence Microscopy with an Ideal sCMOS Camera

https://s3.sandbox.research.gatech.edu//print/pdf/node/3475