

Technologies Available for LICENSING

OFFICE OF TECHNOLOGY LICENSING

https://licensing.research.gatech.edu | techlicensing@gtrc.gatech.edu

Hybrid Zeolitic Imidazolate Frameworks for Effective Gas Separation

New, advanced material with tunable porosity shows potential for large-scale carbon dioxide capture

Georgia Tech researchers have developed hybrid zeolitic imidazolate framework (ZIF) materials that allow for the continuous tuning of their porosity and functionality. ZIF materials in general contain metal centers connected by imidazole linkers. The continuous control over pore characteristics (like size, shape, flexibility, and functional groups) of the hybrid ZIFs means that the materials can be tailored to a specific application, like for CO_2/N_2 or CO_2/CH_A separations for natural gas purification. Leveraging the inherently advantageous properties of ZIF—thermal and chemical stability, high microporosity, and high surface area—researchers have prepared this new model of material to include more than one type of imidazole ligand simultaneously in a tunable manner, a differentiating feature from earlier ZIF models. A unique method of synthesis produces hybrid materials with properties distinctly different from the parent single-linker materials. This synthesis technique provides a platform for tuning functionality or porosity based on the ligands used.

Summary Bullets

- Tunable: Provides a mechanism for adjusting the porosity and functionality of ZIF materials to be used in a range of applications
- Advanced: Demonstrates significantly higher levels of separation selectivity from molecular mixtures of interest than previous ZIF models
- Scalable: Holds potential for large-scale CO₂ separation in different materials, such as membranes and adsorbents

Solution Advantages

- Tunable: Provides a mechanism for adjusting the porosity and functionality of ZIF materials to be used in a range of applications
- Advanced: Demonstrates significantly higher levels of separation selectivity from molecular mixtures of interest than previous ZIF models
- Scalable: Holds potential for large-scale CO₂ separation in different materials, such as membranes and adsorbents

Potential Commercial Applications

- Natural gas purification
- CO₂ capture
- Chemical sensors
- Catalysis

Background and More Information

Zeolitic imidazolate frameworks are a class of nanoporous metal-organic materials with pore sizes in the range of 0.2 to 0.5 nanometers. Framework modification of porous materials like ZIFs can significantly enhance the performance of these materials by making their properties tunable. This enhancement makes the material significantly more useful for processes like separation, catalysis, and chemical sensors. Importantly, improving material performance also reduces the energy needed for these processes. ZIFs are a good candidate for framework modification because they have been shown to exhibit effects such as "gate-opening" and pore flexibility, meaning they make structural changes during adsorption to allow more (or larger) adsorbate molecules into the framework.

Inventors

- Dr. Sankar Nair
 - Professor, James F. Simmons Faculty Fellow and Associate Chair for Industry Outreach Georgia Tech School of Chemical and Biomolecular Engineering
- Dr. Christopher Jones
 Professor- Georgia Tech School of Chemical and Biomolecular Engineering
- Joshua Thompson
 - Former Graduate Research Assistant Georgia Tech Nair Research Group
- Catherine Weems
 - Former Undergraduate Researcher Georgia Tech

IP Status

: US9527872B2

Publications

, -

Images

Visit the Technology here:

Hybrid Zeolitic Imidazolate Frameworks for Effective Gas Separation