Autonomous Indoor Robotic Blimps (#7136)

An autonomous indoor robotic blimp with the ability to interact with humans

Researchers have developed a miniature autonomous blimp for use with research in the areas of human robot interaction, swarming, and environmental mapping and education. The blimp comprises an envelope with a saucer shape for stabilization along the two axes of rotation. The blimp also involves a gondola with four propellers and is driven by four motors to control the vertical and horizontal motion. The gondola harbors the electronics and electrical components including a processor, wireless communication module, camera, IMU (inertial measure unit), a battery and a sensor. The modular design of the blimp allows for various type of sensor attachments including range, light, humidity, sound, CO₂ etc.

This technology has been integrated with two others—a motion capture marker (8528) and flight control system (8591)—into a full-scale prototype. (The three inventions can also be used independently.) Functionality tests of the integrated system demonstrated successful performance and reliability for nearly one year. Videos of these tests are available on the research team’s YouTube channel.

Benefits/Advantages

- Miniature size and low cost
- Flight duration of more than 3 hours
- Safe interaction with humans
- Outstanding stability and maneuverability

Potential Commercial Applications

- Aerial Internet of Things (IoT) sensing platform
- Human robot interaction- facial recognition and recognizing human gestures
- Personal shopping aid in a supermarket
- Guiding groups in large public facilities
- Environmental mapping
- Surveillance, inspection of structures, and videography
- Scientific research and education

Background/Context for This Invention

Robotic platforms are an integral part of research and development in the field of autonomy, particularly with the advent of highly maneuverable and simple multi-copters (aerial vehicles). Limited flight time and safety of the personnel around multi-copters are the major concerns and limit the applications to mostly
outdoors use of approximately 30 minutes. There is a need for technology with longer flight time and is safe for interaction with human beings.

Dr. Fumin Zhang
Professor - Georgia Tech School of Electrical and Computer Engineering

Vivek Mishra
Graduate Research Assistant - Georgia Tech Systems Research lab

Jesse Varnell

Sungjin Cho

Qiuyang Tao

Phillip Sung Tse Chang

More Information

Publications

Blimps Seem Like the Friendliest Kind of Indoor Flying Robots, IEEE Spectrum, June 8, 2017

For more information about this technology, please visit: https://licensing.research.gatech.edu/technology/autonomous-indoor-robotic-blimps

Images:
The gene structure depicting the domains of myocilin, including signal peptide, location of key cysteine residues, and its coiled-coil, leucine zipper, and olfactomedin domains.
The myocilin quaternary structure based on solution X-ray scattering, X-ray crystallography, and chemical cross-linking experiments.